On the ultimate regime of Rayleigh–Bernard convection
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 7 (2015) no. 4, pp. 61-67 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A two-dimensional and non-stationary convection of a viscous incompressible liquid in a vertical narrow channel during down heating is discussed. A new asymptotic regime of convection with a linear dependence of Nusselt and Reynolds numbers on the Rayleigh number was derived. The asymptotic law derived can be considered as an addition to the fundamental root law.
Keywords: convection; asymptotic regime; Rayleigh number; Prandtl number; spectrum; linear instability.
@article{VYURM_2015_7_4_a7,
     author = {I. B. Palymskiy},
     title = {On the ultimate regime of {Rayleigh{\textendash}Bernard} convection},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {61--67},
     year = {2015},
     volume = {7},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2015_7_4_a7/}
}
TY  - JOUR
AU  - I. B. Palymskiy
TI  - On the ultimate regime of Rayleigh–Bernard convection
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2015
SP  - 61
EP  - 67
VL  - 7
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURM_2015_7_4_a7/
LA  - ru
ID  - VYURM_2015_7_4_a7
ER  - 
%0 Journal Article
%A I. B. Palymskiy
%T On the ultimate regime of Rayleigh–Bernard convection
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2015
%P 61-67
%V 7
%N 4
%U http://geodesic.mathdoc.fr/item/VYURM_2015_7_4_a7/
%G ru
%F VYURM_2015_7_4_a7
I. B. Palymskiy. On the ultimate regime of Rayleigh–Bernard convection. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 7 (2015) no. 4, pp. 61-67. http://geodesic.mathdoc.fr/item/VYURM_2015_7_4_a7/

[1] F. Chilla, J. Schumacher, “New perspectives in turbulent Rayleigh–Benard convection”, Eur. Phys. J. E, 35:7 (2012), 58 | DOI

[2] J. J. Niemela, L. Skrbek, K. R. Sreenivasan, R. J. Donnelly, “Turbulent convection at very high Rayleigh numbers”, Nature, 404:20 (2000), 837–840 | DOI

[3] X. Chavanne, F. Chilla, B. Chabaud, B. Castaing, B. Hebral, “Turbulent Rayleigh–Benard convection in gaseous and liquid He”, Phys. Fluids, 13:5 (2001), 1300–1320 | DOI

[4] X.-Z. Wu, A. Libchaber, “Scaling relations in thermal turbulence: the aspect-ratio dependence”, Phys. Rev. A, 45:2 (1992), 842–845 | DOI

[5] X.-Zh. He, D. Funfschilling, H. Nobach et al., “Transition to the ultimate state of turbulent Rayleigh–Benard convection”, Phys. Rev. Let., 108 (2012), 024502, 5 pp. | DOI

[6] G. Ahlers, D. Funfschilling, E. Bodenschatz, “Transition in heat transport by turbulent convection at Rayleigh numbers up to $10^{15}$”, New journal of physics, 11 (2009), 123001–123018 | DOI

[7] R. H. Kraichnan, “Turbulent thermal convection at arbitrary Prandtl number”, Phys. Fluids, 5 (1962), 1374 | DOI

[8] E. Calzavarini, D. Lohse, F. Toschi, R. Tripiccione, “Rayleigh and Prandtl number scaling in the bulk of Rayleigh–Benard turbulence”, Phys. Fluids, 17 (2005), 055107, 7 pp. | DOI | Zbl

[9] J. P. Whitehead, C. R. Doering, “Ultimate state of two-dimensional Rayleigh–Benard convection between free-slip fixed-temperature boundaries”, Phys. Rev. Let., 106 (2011), 244501, 4 pp. | DOI

[10] E. M. King, S. Stellmach, J. Noir et al., “Boundary layer control of rotating convection systems”, Nature, 457:7227 (2009), 301–304 | DOI

[11] D. R. Hewitt, J. A. Neufeld, J. R. Lister, “Ultimate regime of high Rayleigh number convection in a porous medium”, Phys. Rev. Let., 108 (2012), 224503, 4 pp. | DOI

[12] Palymskiy I. B., Turbulent Rayleigh–Benar convection. Numerical method and calculation results, LAP, Germany, 2011, 232 pp.