Existence of invariant spaces and exponential dichotomies of solutions of dynamical Sobolev type equations in quasi-Banach spaces
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 7 (2015) no. 4, pp. 46-53 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

At the end of the nineteenth century A. Poincare began to study equations which were unsolved with respect to high derivative equations. The systematical study of such equations began in S. L. Sobolev's works in the second part of the last century. Therefore, such equations are called Sobolev type equations. The increased interest to Sobolev type equations led to the necessity to consider them in quasi-Banach spaces. This article presents the results of the existence of exponential dichotomies of solutions of dynamical Sobolev type equations studied in quasi-Banach spaces. The relatively spectral theorem and the problem of the existence of invariant solution spaces were considered. The interest to such solution is explained by the fact that it is the most popular and reflects experimental data while solving practical tasks. Besides the introduction and the references the article contains two parts. The first part provides necessary notions and a relatively spectral theorem in quasi-Banach spaces. The second one represents the existence of invariant spaces and exponential dichotomies of solutions of the dynamical Sobolev type equation in quasi-Banach spaces.
Keywords: quasi-Sobolev space; relatively spectral theorem; invariant spaces; exponential dichotomies of solutions; Sobolev type equations.
@article{VYURM_2015_7_4_a5,
     author = {M. A. Sagadeeva and F. L. Hasan},
     title = {Existence of invariant spaces and exponential dichotomies of solutions of dynamical {Sobolev} type equations in {quasi-Banach} spaces},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {46--53},
     year = {2015},
     volume = {7},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2015_7_4_a5/}
}
TY  - JOUR
AU  - M. A. Sagadeeva
AU  - F. L. Hasan
TI  - Existence of invariant spaces and exponential dichotomies of solutions of dynamical Sobolev type equations in quasi-Banach spaces
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2015
SP  - 46
EP  - 53
VL  - 7
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURM_2015_7_4_a5/
LA  - ru
ID  - VYURM_2015_7_4_a5
ER  - 
%0 Journal Article
%A M. A. Sagadeeva
%A F. L. Hasan
%T Existence of invariant spaces and exponential dichotomies of solutions of dynamical Sobolev type equations in quasi-Banach spaces
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2015
%P 46-53
%V 7
%N 4
%U http://geodesic.mathdoc.fr/item/VYURM_2015_7_4_a5/
%G ru
%F VYURM_2015_7_4_a5
M. A. Sagadeeva; F. L. Hasan. Existence of invariant spaces and exponential dichotomies of solutions of dynamical Sobolev type equations in quasi-Banach spaces. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 7 (2015) no. 4, pp. 46-53. http://geodesic.mathdoc.fr/item/VYURM_2015_7_4_a5/

[1] Sviridyuk G. A., “On the General Theory of Operator Semigroups”, Russian Mathematical Surveys, 49:4 (1994), 45–74 | DOI | MR | Zbl

[2] Sviridyuk G. A., Keller A. V., “Invariant spaces and dichotomies of solutions of a class of linear equations of Sobolev type”, Russian Math., 41:5 (1997), 57–65 | MR | Zbl

[3] Sagadeeva M. A., Dihotomies of Solutions to Linear Sobolev Type Equations, Publishing center of SUSU, Chelyabinsk, 2012, 139 pp. (in Russ.) | MR

[4] Sviridyuk G. A., Zagrebina S. A., “Nonclassical Models of Mathematical Physics”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 40(299):14 (2012), 7–18 (in Russ.)

[5] Al-Delfi J. K., “Quasi-Sobolev Spaces $\ell _{p}^{m}$”, Bulletin of the South Ural State University. Series: Mathematics. Mechanics. Physics, 5:1 (2013), 107–109 (in Russ.)

[6] G. V. Demidenko, S. V. Uspenskii, Partial differential equations and systems not solvable with respect to the highest-order derivative, Marcel Dekker, Inc., New York–Basel–Hong Kong, 2003, 239 pp. | DOI | MR | Zbl

[7] R. E. Showalter, “The Sobolev type equations. I; II”, Appl. Anal., 5:1 (1975), 15–22 ; 2, 81–99 | DOI | MR | Zbl | MR | Zbl

[8] Sveshnikov A. G., Al'shin A. B., Korpusov M. O., Pletner Yu. D., Linear and Nonlinear Sobolev Type Equations, FizMatLit Publ., M., 2007, 736 pp. (in Russ.)

[9] Zamyshlyaeva A. A., Linear Sobolev Type Equations of High Order, Publishing center of SUSU, Chelyabinsk, 2012, 88 pp. (in Russ.) | MR

[10] Manakova N. A., Problems of Optimal Control for the Semilinear Sobolev Type Equations, Publishing center of SUSU, Chelyabinsk, 2012, 107 pp. (in Russ.) | MR

[11] Bergh J., Löfström J., Interpolation Spaces. An Introduction, Springer-Verlag, Berlin–Heidelberg–New York, 1976, 207 pp. | DOI | MR | MR | Zbl

[12] Al-Delfi J. K., “The Laplace' Quasi-operator in Quasi-Sobolev spaces”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2013, no. 2(13), 13–16 (in Russ.) | DOI | Zbl

[13] S. Rolewicz, Metric Linear Spaces, PWN, Warsaw, 1985, 459 pp. | MR | Zbl

[14] Al-Delfi J. K., The Study of Degenerated Holomorphic Groups in Quasi-Banach spaces, Cand. phys. and math. sci. diss., Voronezh, 2015, 98 pp. (in Russ.)

[15] A. V. Keller, A. A. Zamyshlyaeva, M. A. Sagadeeva, “On Integration in Quasi-Banach Spaces of Sequences”, Journal of Computational and Engineering Mathematics, 2:1 (2015), 52–56 | DOI

[16] Keller A. V., AL-Delfi J. K., “Holomorphic Degenerate Groups of Operators in Quasi-Banach Spaces”, Bulletin of the South Ural State University. Series “Mathematics, Mechanics, Physics”, 7:1 (2015), 20–27 (in Russ.)