@article{VYURM_2015_7_4_a5,
author = {M. A. Sagadeeva and F. L. Hasan},
title = {Existence of invariant spaces and exponential dichotomies of solutions of dynamical {Sobolev} type equations in {quasi-Banach} spaces},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {46--53},
year = {2015},
volume = {7},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2015_7_4_a5/}
}
TY - JOUR AU - M. A. Sagadeeva AU - F. L. Hasan TI - Existence of invariant spaces and exponential dichotomies of solutions of dynamical Sobolev type equations in quasi-Banach spaces JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2015 SP - 46 EP - 53 VL - 7 IS - 4 UR - http://geodesic.mathdoc.fr/item/VYURM_2015_7_4_a5/ LA - ru ID - VYURM_2015_7_4_a5 ER -
%0 Journal Article %A M. A. Sagadeeva %A F. L. Hasan %T Existence of invariant spaces and exponential dichotomies of solutions of dynamical Sobolev type equations in quasi-Banach spaces %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2015 %P 46-53 %V 7 %N 4 %U http://geodesic.mathdoc.fr/item/VYURM_2015_7_4_a5/ %G ru %F VYURM_2015_7_4_a5
M. A. Sagadeeva; F. L. Hasan. Existence of invariant spaces and exponential dichotomies of solutions of dynamical Sobolev type equations in quasi-Banach spaces. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 7 (2015) no. 4, pp. 46-53. http://geodesic.mathdoc.fr/item/VYURM_2015_7_4_a5/
[1] Sviridyuk G. A., “On the General Theory of Operator Semigroups”, Russian Mathematical Surveys, 49:4 (1994), 45–74 | DOI | MR | Zbl
[2] Sviridyuk G. A., Keller A. V., “Invariant spaces and dichotomies of solutions of a class of linear equations of Sobolev type”, Russian Math., 41:5 (1997), 57–65 | MR | Zbl
[3] Sagadeeva M. A., Dihotomies of Solutions to Linear Sobolev Type Equations, Publishing center of SUSU, Chelyabinsk, 2012, 139 pp. (in Russ.) | MR
[4] Sviridyuk G. A., Zagrebina S. A., “Nonclassical Models of Mathematical Physics”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 40(299):14 (2012), 7–18 (in Russ.)
[5] Al-Delfi J. K., “Quasi-Sobolev Spaces $\ell _{p}^{m}$”, Bulletin of the South Ural State University. Series: Mathematics. Mechanics. Physics, 5:1 (2013), 107–109 (in Russ.)
[6] G. V. Demidenko, S. V. Uspenskii, Partial differential equations and systems not solvable with respect to the highest-order derivative, Marcel Dekker, Inc., New York–Basel–Hong Kong, 2003, 239 pp. | DOI | MR | Zbl
[7] R. E. Showalter, “The Sobolev type equations. I; II”, Appl. Anal., 5:1 (1975), 15–22 ; 2, 81–99 | DOI | MR | Zbl | MR | Zbl
[8] Sveshnikov A. G., Al'shin A. B., Korpusov M. O., Pletner Yu. D., Linear and Nonlinear Sobolev Type Equations, FizMatLit Publ., M., 2007, 736 pp. (in Russ.)
[9] Zamyshlyaeva A. A., Linear Sobolev Type Equations of High Order, Publishing center of SUSU, Chelyabinsk, 2012, 88 pp. (in Russ.) | MR
[10] Manakova N. A., Problems of Optimal Control for the Semilinear Sobolev Type Equations, Publishing center of SUSU, Chelyabinsk, 2012, 107 pp. (in Russ.) | MR
[11] Bergh J., Löfström J., Interpolation Spaces. An Introduction, Springer-Verlag, Berlin–Heidelberg–New York, 1976, 207 pp. | DOI | MR | MR | Zbl
[12] Al-Delfi J. K., “The Laplace' Quasi-operator in Quasi-Sobolev spaces”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2013, no. 2(13), 13–16 (in Russ.) | DOI | Zbl
[13] S. Rolewicz, Metric Linear Spaces, PWN, Warsaw, 1985, 459 pp. | MR | Zbl
[14] Al-Delfi J. K., The Study of Degenerated Holomorphic Groups in Quasi-Banach spaces, Cand. phys. and math. sci. diss., Voronezh, 2015, 98 pp. (in Russ.)
[15] A. V. Keller, A. A. Zamyshlyaeva, M. A. Sagadeeva, “On Integration in Quasi-Banach Spaces of Sequences”, Journal of Computational and Engineering Mathematics, 2:1 (2015), 52–56 | DOI
[16] Keller A. V., AL-Delfi J. K., “Holomorphic Degenerate Groups of Operators in Quasi-Banach Spaces”, Bulletin of the South Ural State University. Series “Mathematics, Mechanics, Physics”, 7:1 (2015), 20–27 (in Russ.)