@article{VYURM_2015_7_4_a0,
author = {E. A. Bogatyreva},
title = {The start control and final observation problem for a quasi-linear {Sobolev} type equation},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {5--10},
year = {2015},
volume = {7},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2015_7_4_a0/}
}
TY - JOUR AU - E. A. Bogatyreva TI - The start control and final observation problem for a quasi-linear Sobolev type equation JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2015 SP - 5 EP - 10 VL - 7 IS - 4 UR - http://geodesic.mathdoc.fr/item/VYURM_2015_7_4_a0/ LA - ru ID - VYURM_2015_7_4_a0 ER -
%0 Journal Article %A E. A. Bogatyreva %T The start control and final observation problem for a quasi-linear Sobolev type equation %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2015 %P 5-10 %V 7 %N 4 %U http://geodesic.mathdoc.fr/item/VYURM_2015_7_4_a0/ %G ru %F VYURM_2015_7_4_a0
E. A. Bogatyreva. The start control and final observation problem for a quasi-linear Sobolev type equation. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 7 (2015) no. 4, pp. 5-10. http://geodesic.mathdoc.fr/item/VYURM_2015_7_4_a0/
[1] Barenblatt G. I., Gil'man A. A., Inzhenerno-fizicheskiy zhurnal, 52:3 (1987), 456–461 (in Russ.)
[2] E. A. Bogatyreva, I. N. Semenova, “On the Uniqueness of a Nonlocal Solution In The Barenblatt–Gilman Model”, Bulletin of the South Ural State University. Series: Mathematical modelling, programming, 7:4 (2014), 113–119 | DOI | Zbl
[3] Fursikov A. V., Optimal control of distributed systems. Theory and Applications, Nauchnaya kniga Publ., Novosibirsk, 1999, 350 pp. (in Russ.)
[4] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston–Köln–Tokyo, 2003, 216 pp. | DOI | MR | Zbl
[5] Zamyshlyaeva A. A., Tsyplenkova O. N., “The optimal control over solution of the initial-finish value problem for the Boussinsque–Love equation”, Bulletin of the South Ural State University. Series: Mathematical modelling, programming, 2012, no. 5(264), 13–24 (in Russ.)
[6] Keller A. V., “Numerical solution of the optimal control problem for degenerate linear system of equations with Showalter–Sidorov initial conditions”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 2008, no. 27(127), 50–56 (in Russ.)
[7] Sviridyuk G. A., Manakova N. A., “An optimal control problem for the Hoff equation”, Journal of Applied and Industrial Mathematics | DOI | MR
[8] A. B. Al'shin, M. O. Korpusov, A. G. Sveshnikov, Blow-up in Nonlinear Sobolev-Type Equations, Walter de Gruyter GmbH Co. KG, Berlin–N.-Y., 2011, 648 pp. | DOI | MR
[9] Sviridyuk G. A., Izv. vuzov. Matematika, 1989, no. 2, 55–61 (in Russ.)