The start control and final observation problem for a quasi-linear Sobolev type equation
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 7 (2015) no. 4, pp. 5-10 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Sufficient solvability conditions of the start control and final observation problem in a weak gener- alized meaning for one abstract quasilinear Sobolev type equation are obtained. Sobolev type equations constitute a large area of nonclassical equations of mathematical physics. Techniques used in this article originated in the theory of semilinear Sobolev type equations. Solvability of the start control and final observation problem for the Barenblatt–Gilman model describing the nonequilibrium countercurrent capillary impregnation was proved on the basis of abstract results. The unknown function corresponds to effective saturation. The main equation of this model is nonlinear and implicit with respect to the time derivative which makes it quite difficult to study. Formulation of this problem agrees with consideration of the effect of disequilibrium, which is the characteristic feature of the considered model.
Keywords: quasi-linear Sobolev type equations; start control and final observation problem; weak generalized solution; Barenblatt–Gilman model.
@article{VYURM_2015_7_4_a0,
     author = {E. A. Bogatyreva},
     title = {The start control and final observation problem for a quasi-linear {Sobolev} type equation},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {5--10},
     year = {2015},
     volume = {7},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2015_7_4_a0/}
}
TY  - JOUR
AU  - E. A. Bogatyreva
TI  - The start control and final observation problem for a quasi-linear Sobolev type equation
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2015
SP  - 5
EP  - 10
VL  - 7
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURM_2015_7_4_a0/
LA  - ru
ID  - VYURM_2015_7_4_a0
ER  - 
%0 Journal Article
%A E. A. Bogatyreva
%T The start control and final observation problem for a quasi-linear Sobolev type equation
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2015
%P 5-10
%V 7
%N 4
%U http://geodesic.mathdoc.fr/item/VYURM_2015_7_4_a0/
%G ru
%F VYURM_2015_7_4_a0
E. A. Bogatyreva. The start control and final observation problem for a quasi-linear Sobolev type equation. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 7 (2015) no. 4, pp. 5-10. http://geodesic.mathdoc.fr/item/VYURM_2015_7_4_a0/

[1] Barenblatt G. I., Gil'man A. A., Inzhenerno-fizicheskiy zhurnal, 52:3 (1987), 456–461 (in Russ.)

[2] E. A. Bogatyreva, I. N. Semenova, “On the Uniqueness of a Nonlocal Solution In The Barenblatt–Gilman Model”, Bulletin of the South Ural State University. Series: Mathematical modelling, programming, 7:4 (2014), 113–119 | DOI | Zbl

[3] Fursikov A. V., Optimal control of distributed systems. Theory and Applications, Nauchnaya kniga Publ., Novosibirsk, 1999, 350 pp. (in Russ.)

[4] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston–Köln–Tokyo, 2003, 216 pp. | DOI | MR | Zbl

[5] Zamyshlyaeva A. A., Tsyplenkova O. N., “The optimal control over solution of the initial-finish value problem for the Boussinsque–Love equation”, Bulletin of the South Ural State University. Series: Mathematical modelling, programming, 2012, no. 5(264), 13–24 (in Russ.)

[6] Keller A. V., “Numerical solution of the optimal control problem for degenerate linear system of equations with Showalter–Sidorov initial conditions”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 2008, no. 27(127), 50–56 (in Russ.)

[7] Sviridyuk G. A., Manakova N. A., “An optimal control problem for the Hoff equation”, Journal of Applied and Industrial Mathematics | DOI | MR

[8] A. B. Al'shin, M. O. Korpusov, A. G. Sveshnikov, Blow-up in Nonlinear Sobolev-Type Equations, Walter de Gruyter GmbH Co. KG, Berlin–N.-Y., 2011, 648 pp. | DOI | MR

[9] Sviridyuk G. A., Izv. vuzov. Matematika, 1989, no. 2, 55–61 (in Russ.)