The problem of the central longitudinal opening mode crack with the filler in the strip
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 7 (2015) no. 3, pp. 65-70 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The solution to the problem of the central longitudinal opening mode crack with the filler in the strip is given. Within this model we suppose that disturbances of vertical displacement at crack edges are proportional to the normal stress at its edges. Fourier integral transformation is used to solve the problem. The problem is reduced to integral differential equation as function which is connected with disturbances of vertical displacement at crack edges. On the basis of numerical results the conclusion is made that the increase of the half-width of the strip and coefficient which is characterized by the filler leads to the reduction stress intensity coefficients (SIC), the increase of modulus of rigidity and Poisson’s strain ratio will lead to the increase of stress intensity coefficients, elastic behaviour of the strip doesn’t affect stress intensity coefficients for the cracks with stress-free edges.
Keywords: strip; crack; filler; stress intensity coefficients; Fourier integral transformation; integral differential equation.
@article{VYURM_2015_7_3_a9,
     author = {N. N. Antonenko},
     title = {The problem of the central longitudinal opening mode crack with the filler in the strip},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {65--70},
     year = {2015},
     volume = {7},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2015_7_3_a9/}
}
TY  - JOUR
AU  - N. N. Antonenko
TI  - The problem of the central longitudinal opening mode crack with the filler in the strip
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2015
SP  - 65
EP  - 70
VL  - 7
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VYURM_2015_7_3_a9/
LA  - ru
ID  - VYURM_2015_7_3_a9
ER  - 
%0 Journal Article
%A N. N. Antonenko
%T The problem of the central longitudinal opening mode crack with the filler in the strip
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2015
%P 65-70
%V 7
%N 3
%U http://geodesic.mathdoc.fr/item/VYURM_2015_7_3_a9/
%G ru
%F VYURM_2015_7_3_a9
N. N. Antonenko. The problem of the central longitudinal opening mode crack with the filler in the strip. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 7 (2015) no. 3, pp. 65-70. http://geodesic.mathdoc.fr/item/VYURM_2015_7_3_a9/

[1] Y. Murakami, Stress intensity factors handbook, in 2 vol., v. 1, Pergamon Press, 1987, 1566 pp.

[2] Smetanin B. I., “Some of the problem of cracks in an elastic wedge and layer”, Inzh. zh. MTT, 1968, no. 2, 115–122 (in Russ.) | MR

[3] Savruk M. P., Two-dimensional elasticity problems for the bodies with cracks, Nauk. dumka Publ., Kiev, 1981, 324 pp. (in Russ.) | MR

[4] Aleksandrov V. M., Smetanin B. I., Journal of Applied Mathematics and Mechanics, 69:1 (2005), 150–159 (in Russ.) | Zbl

[5] W. B. Fichter, Stresses at the tip of a longitudinal crack in a plate strip, National Aeronautics and Space Administration, Washington, 1967, 55 pp.

[6] Aleksandrov V. M., Izv. RAN. MTT, 2006, no. 1, 115–124 (in Russ.)

[7] Pozharskiy D. A., Molchanov A. A., Vestnik Donskogo gosudarstvennogo tekhnicheskogo universiteta, 10 (2010), 447–454 (in Russ.)

[8] Antonenko N. M., Velichko I. G., Applied Problems of Mathematics and Mechanics, 2011, no. 9, 141–149 (in Ukrainian)

[9] Tkachenko I. G., Applied Problems of Mathematics and Mechanics, 2005, no. 3, 70–78 (in Ukrainian)

[10] Lifanov I. K., The method of singular integral equations and numerical experiment (in mathematical physics, physics of aerodynamics, elasticity and wave diffraction), Yanus Publ., M., 1995, 520 pp. (in Russ.) | MR