@article{VYURM_2015_7_3_a8,
author = {M. Z. Khayrislamov},
title = {Numerical solution of quasi-linear heat conduction equation in the problem of cylinder heating by moving heat source},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {58--64},
year = {2015},
volume = {7},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2015_7_3_a8/}
}
TY - JOUR AU - M. Z. Khayrislamov TI - Numerical solution of quasi-linear heat conduction equation in the problem of cylinder heating by moving heat source JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2015 SP - 58 EP - 64 VL - 7 IS - 3 UR - http://geodesic.mathdoc.fr/item/VYURM_2015_7_3_a8/ LA - ru ID - VYURM_2015_7_3_a8 ER -
%0 Journal Article %A M. Z. Khayrislamov %T Numerical solution of quasi-linear heat conduction equation in the problem of cylinder heating by moving heat source %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2015 %P 58-64 %V 7 %N 3 %U http://geodesic.mathdoc.fr/item/VYURM_2015_7_3_a8/ %G ru %F VYURM_2015_7_3_a8
M. Z. Khayrislamov. Numerical solution of quasi-linear heat conduction equation in the problem of cylinder heating by moving heat source. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 7 (2015) no. 3, pp. 58-64. http://geodesic.mathdoc.fr/item/VYURM_2015_7_3_a8/
[1] Martinson L. K., Malov Yu. I., Differential equations of mathematical physics, The Textbook for high schools, Izd-vo MGTU im. N. E. Baumana Publ., M., 2002, 368 pp. (in Russ.)
[2] Kalitkin N. N., Numerical methods, Nauka Publ., M., 1978, 512 pp. (in Russ.) | MR
[3] Kokonkov N. I., Aristova E. N., “Rosenbrock scheme for two-dimensional non-stationary nonlinear heat equation”, Mathematics. Computer. Education, Proc. 18th International Conference (Pushchino, 2011) (in Russ.)
[4] Herreinstein A. V., Khayrislamov M. Z., “Explicit difference scheme for the solution of one-dimensional quasi-linear heat conductivity equation”, Bulletin of South Ural State University. Series of “Mathematics. Mechanics. Physics”, 5:1 (2013), 12–17 (in Russ.)
[5] Khayrislamov M. Z., “Differential-difference scheme for solving the problem for a quasi-linear heat conduction cylinder”, Modern problems of mathematics and its practical aspects, Proc. of scientific-practical conference, Permskiy gosudarstvennyy natsional'nyy issledovatel'skiy universitet Publ., Perm', 2013, 177 (in Russ.)
[6] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed., SIAM, 2003, 231–234 | MR
[7] Gerenshteyn A. V., Mashrabov N., Gerenshteyn E. A., “Modeling of thermal fields at variable thermal properties of detail”, Advances in science — agricultural production, Proc. LIII international scientific-technical conference, v. III, ChGAA Publ., Chelyabinsk, 2014, 31–38 (in Russ.)