Numerical solution of quasi-linear heat conduction equation in the problem of cylinder heating by moving heat source
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 7 (2015) no. 3, pp. 58-64 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of finite cylinder heating by heat source rotating with constant angular rate and moving along cylinder axis is considered in the paper. Thermophysical properties of cylinder material are defined by the temperature functions. Numerical method of quasi-linear heat conduction equation solution is given on the basis of the use of explicit difference scheme. The numerical problem solution by the given method is compared with the solution by implicit difference scheme.
Keywords: heat conduction; quasi-linear heat conduction equation; difference schemes; cylinder coordinate system.
@article{VYURM_2015_7_3_a8,
     author = {M. Z. Khayrislamov},
     title = {Numerical solution of quasi-linear heat conduction equation in the problem of cylinder heating by moving heat source},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {58--64},
     year = {2015},
     volume = {7},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2015_7_3_a8/}
}
TY  - JOUR
AU  - M. Z. Khayrislamov
TI  - Numerical solution of quasi-linear heat conduction equation in the problem of cylinder heating by moving heat source
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2015
SP  - 58
EP  - 64
VL  - 7
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VYURM_2015_7_3_a8/
LA  - ru
ID  - VYURM_2015_7_3_a8
ER  - 
%0 Journal Article
%A M. Z. Khayrislamov
%T Numerical solution of quasi-linear heat conduction equation in the problem of cylinder heating by moving heat source
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2015
%P 58-64
%V 7
%N 3
%U http://geodesic.mathdoc.fr/item/VYURM_2015_7_3_a8/
%G ru
%F VYURM_2015_7_3_a8
M. Z. Khayrislamov. Numerical solution of quasi-linear heat conduction equation in the problem of cylinder heating by moving heat source. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 7 (2015) no. 3, pp. 58-64. http://geodesic.mathdoc.fr/item/VYURM_2015_7_3_a8/

[1] Martinson L. K., Malov Yu. I., Differential equations of mathematical physics, The Textbook for high schools, Izd-vo MGTU im. N. E. Baumana Publ., M., 2002, 368 pp. (in Russ.)

[2] Kalitkin N. N., Numerical methods, Nauka Publ., M., 1978, 512 pp. (in Russ.) | MR

[3] Kokonkov N. I., Aristova E. N., “Rosenbrock scheme for two-dimensional non-stationary nonlinear heat equation”, Mathematics. Computer. Education, Proc. 18th International Conference (Pushchino, 2011) (in Russ.)

[4] Herreinstein A. V., Khayrislamov M. Z., “Explicit difference scheme for the solution of one-dimensional quasi-linear heat conductivity equation”, Bulletin of South Ural State University. Series of “Mathematics. Mechanics. Physics”, 5:1 (2013), 12–17 (in Russ.)

[5] Khayrislamov M. Z., “Differential-difference scheme for solving the problem for a quasi-linear heat conduction cylinder”, Modern problems of mathematics and its practical aspects, Proc. of scientific-practical conference, Permskiy gosudarstvennyy natsional'nyy issledovatel'skiy universitet Publ., Perm', 2013, 177 (in Russ.)

[6] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed., SIAM, 2003, 231–234 | MR

[7] Gerenshteyn A. V., Mashrabov N., Gerenshteyn E. A., “Modeling of thermal fields at variable thermal properties of detail”, Advances in science — agricultural production, Proc. LIII international scientific-technical conference, v. III, ChGAA Publ., Chelyabinsk, 2014, 31–38 (in Russ.)