Metric estimates of small denominators in nonlocal boundary value problems
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 7 (2015) no. 3, pp. 48-53 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The metric estimates of small denominators at the analysis of nonlocal boundary value problems for a parabolic-hyperbolic equation are established. We use the metric approach to prove these estimates.
Keywords: equation of mixed type; nonlocal boundary value problem; Borel–Cantelli lemma; Lebesgue measure.
@article{VYURM_2015_7_3_a6,
     author = {M. M. Symotyuk and I. Y. Savka},
     title = {Metric estimates of small denominators in nonlocal boundary value problems},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {48--53},
     year = {2015},
     volume = {7},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2015_7_3_a6/}
}
TY  - JOUR
AU  - M. M. Symotyuk
AU  - I. Y. Savka
TI  - Metric estimates of small denominators in nonlocal boundary value problems
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2015
SP  - 48
EP  - 53
VL  - 7
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VYURM_2015_7_3_a6/
LA  - ru
ID  - VYURM_2015_7_3_a6
ER  - 
%0 Journal Article
%A M. M. Symotyuk
%A I. Y. Savka
%T Metric estimates of small denominators in nonlocal boundary value problems
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2015
%P 48-53
%V 7
%N 3
%U http://geodesic.mathdoc.fr/item/VYURM_2015_7_3_a6/
%G ru
%F VYURM_2015_7_3_a6
M. M. Symotyuk; I. Y. Savka. Metric estimates of small denominators in nonlocal boundary value problems. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 7 (2015) no. 3, pp. 48-53. http://geodesic.mathdoc.fr/item/VYURM_2015_7_3_a6/

[1] Yunusova G. R., Vestnik of Samara State University. Natural Science Series, 2011, no. 8(89), 108–117 (in Russ.) | MR

[2] Sabitov K. B., “Nonlocal problem for a parabolic-hyperbolic equation in a rectangular domain”, Mathematical Notes, 89:4 (2011), 562–567 | DOI | MR | Zbl

[3] Ptashnik B. I., Invalid boundary value problems for differential equations with partial derivatives, Nauk. dumka Publ., Kiev, 1984, 264 pp. (in Russ.)

[4] Bernik V. I., Mel'nichuk Yu. V., Diofantovy priblizheniya i razmernost' Khausdorfa, Nauka i tekhnika Publ., Minsk, 1988, 144 pp. (in Russ.)

[5] Symotyuk M. M., Savka I. Ya., “Assessment small denominator problem with nonlocal boundary condition for a parabolic-hyperbolic equations”, Proceedings of the Ukrainian scientific conference “Modern problems of on-probability theory and mathematical analysis” (Vorokhta, February 25–March 3, 2013), 83–84 (in Ukrainian)

[6] Gikhman I. I., Skorokhod A. V., Yadrenko M. I., Probability theory and mathematical statistics, Vishcha shkola Publ., Kiev, 1979, 408 pp. (in Russ.)

[7] Ilkiv V. S., Maherovska T. V., Proceedings of the National University “Lviv Polytechnic”. Series “Physics and mathematics”, 2007, no. 607, 12–17 (in Ukrainian)