Two approaches to solving the potential equation in self-similar variables
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 7 (2015) no. 3, pp. 30-38 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The authors, using the method previously proposed by them, investigate the general velocity potential equation for the case of three self-similar variables. Two approaches of this method are used. The first approach assumes that the solution depends only on one variable, which, in turn, is an unknown function of all independent variables, and thus potential equation is reduced to the ODE. Finding unknown function is based on a study of the corresponding overdetermined system of partial differential equations. A number of compatibility conditions for the system are found. Some exact solutions are constructed. It is shown how the solutions obtained can be used in considering the problem of shock-free compression of the gas. The second approach assumes that the function is known and coincides with the function that gives a solution of the potential equation. It is also received a number of exact solutions that can be used to solve some initial and boundary value problems.
Keywords: nonlinear partial differential equations; geometric method of research; reducing a partial differential equation to ODE; exact solutions.
@article{VYURM_2015_7_3_a4,
     author = {L. I. Rubina and O. N. Ul'yanov},
     title = {Two approaches to solving the potential equation in self-similar variables},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {30--38},
     year = {2015},
     volume = {7},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2015_7_3_a4/}
}
TY  - JOUR
AU  - L. I. Rubina
AU  - O. N. Ul'yanov
TI  - Two approaches to solving the potential equation in self-similar variables
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2015
SP  - 30
EP  - 38
VL  - 7
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VYURM_2015_7_3_a4/
LA  - ru
ID  - VYURM_2015_7_3_a4
ER  - 
%0 Journal Article
%A L. I. Rubina
%A O. N. Ul'yanov
%T Two approaches to solving the potential equation in self-similar variables
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2015
%P 30-38
%V 7
%N 3
%U http://geodesic.mathdoc.fr/item/VYURM_2015_7_3_a4/
%G ru
%F VYURM_2015_7_3_a4
L. I. Rubina; O. N. Ul'yanov. Two approaches to solving the potential equation in self-similar variables. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 7 (2015) no. 3, pp. 30-38. http://geodesic.mathdoc.fr/item/VYURM_2015_7_3_a4/

[1] Sidorov A. F., Doklady RAN, 364:2 (1999), 199–202 (in Russ.) | Zbl

[2] Rubina L. I., Ul'yanov O. N., Trudy Inst. Mat. i Mekh. UrO RAN, 16, no. 2 (2010), 209–225 (in Russ.)

[3] Kurant R., Partial Differential Equations, Mir Publ., M., 1964, 830 pp. | MR

[4] Kamke E., Handbook of Ordinary Differential Equations, Nauka Publ., M., 1965, 703 pp. | MR

[5] Rubina L. I., Ul'yanov O. N., “On some method for solving a nonlinear heat equation”, Siberian Mathematical Journal, 53:5 (2012), 872–881 | DOI | MR | Zbl

[6] R. W. Johnson (ed.), Fluid dynamics: The handbook, CRC Press, Boca Raton, FL; Springer-Verlag, Heidelberg, 1998