@article{VYURM_2015_7_3_a3,
author = {N. A. Manakova},
title = {The optimal control problem for the model of dynamics of weakly viscoelastic fluid},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {22--29},
year = {2015},
volume = {7},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2015_7_3_a3/}
}
TY - JOUR AU - N. A. Manakova TI - The optimal control problem for the model of dynamics of weakly viscoelastic fluid JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2015 SP - 22 EP - 29 VL - 7 IS - 3 UR - http://geodesic.mathdoc.fr/item/VYURM_2015_7_3_a3/ LA - ru ID - VYURM_2015_7_3_a3 ER -
%0 Journal Article %A N. A. Manakova %T The optimal control problem for the model of dynamics of weakly viscoelastic fluid %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2015 %P 22-29 %V 7 %N 3 %U http://geodesic.mathdoc.fr/item/VYURM_2015_7_3_a3/ %G ru %F VYURM_2015_7_3_a3
N. A. Manakova. The optimal control problem for the model of dynamics of weakly viscoelastic fluid. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 7 (2015) no. 3, pp. 22-29. http://geodesic.mathdoc.fr/item/VYURM_2015_7_3_a3/
[1] Oskolkov A. P., “Some nonstationary linear and quasilinear systems occurring in the investigation of the motion of viscous fluids”, J. of Soviet Mathematics, 10:2 (1976), 299–335 | MR | Zbl
[2] Oskolkov A. P., “Initial-boundary value problems for equations of motion of Kelvin–Voight fluids and Oldroid fluids”, Proceedings of the Steklov Institute of Mathematics, 179, 1989, 137–182 | MR | Zbl
[3] Sviridyuk G. A., “A model of dynamics of incompressible viskoelastic liquid”, Russian Mathematics (Izvestiya VUZ. Matematika), 38:1 (1994), 59–68 | MR | MR | Zbl
[4] Sviridyuk G. A., Sukacheva T. G., “On the solvability of a nonstationary problem describing the dynamics of an incompressible viscoelastic fluid”, Mathematical Notes, 63:3 (1998), 388–395 | MR | Zbl
[5] Sukacheva T. G., “On the solvability of the nonstationary problem of the dynamics of an incompressible viscoelastic fluid of the Kelvin–Voigt nonzero”, Russian Mathematics (Izvestiya VUZ. Matematika), 43:3 (1998), 44–51 | MR | MR
[6] Korpusov M. O., Sveshnikov A. G., “Blow-up of Oskolkov's system of equations”, Sbornik: Mathematics, 200:4 (2009), 549–572 | MR | Zbl
[7] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston–Koln–Tokyo, 2003, 216 pp. | MR | Zbl
[8] Sviridyuk G. A., Zagrebina S. A., “The Showalter-Sidorov problem as a phenomena of the Sobolev type equations”, The Bulletin of Irkutsk State University. Series: Mathematics, 3:1 (2010), 104–125 (in Russ.) | MR | Zbl
[9] Keller A. V., “Numerical solution of the optimal control problem for degenerate linear system of equations with Showalter–Sidorov initial conditions”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 27(127) (2008), 50–56 (in Russ.) | Zbl
[10] Sviridyuk G. A., Manakova N. A., “An optimal control problem for the Hoff equation”, Journal of Applied and Industrial Mathematics, 1:2 (2007), 247–253 | MR | MR
[11] Sviridyuk G. A., “A singular system of ordinary differential equations”, Differentsial'nye Uravneniya, 23:9 (1987), 1637–1639 (in Russ.) | MR | Zbl
[12] Ladyzhenskaya O. A., The mathematical theory of viscous incompressible flow, Gordon and Breach, N.Y.–London–Paris, 1969, 234 pp. | MR | MR | Zbl
[13] Temam R., Navier–Stokes equations. Theory and numerical analysis, Stud. Math. Appl., 2, North-Holland, Amsterdam–N.Y., 1979 | MR | MR | Zbl
[14] Solonnikov V. A., Linear elliptic systems. Lecture notes, LGU, L., 1979 (in Russ.)