Time nonlocal boundary value problem for a linearized phase field equations system
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 7 (2015) no. 3, pp. 10-15
Voir la notice de l'article provenant de la source Math-Net.Ru
A boundary value problem with nonlocal time conditions is analyzed for a linearized quasi-steady
system of phase field equations. Necessary and sufficient conditions are obtained for the existence and
uniqueness of classical and generalized solutions.
Keywords:
nonlocal problem; boundary value problem; system of phase field equations; classical solution; generalized solution.
@article{VYURM_2015_7_3_a1,
author = {N. D. Ivanova and V. E. Fedorov},
title = {Time nonlocal boundary value problem for a linearized phase field equations system},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {10--15},
publisher = {mathdoc},
volume = {7},
number = {3},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2015_7_3_a1/}
}
TY - JOUR AU - N. D. Ivanova AU - V. E. Fedorov TI - Time nonlocal boundary value problem for a linearized phase field equations system JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2015 SP - 10 EP - 15 VL - 7 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VYURM_2015_7_3_a1/ LA - ru ID - VYURM_2015_7_3_a1 ER -
%0 Journal Article %A N. D. Ivanova %A V. E. Fedorov %T Time nonlocal boundary value problem for a linearized phase field equations system %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2015 %P 10-15 %V 7 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VYURM_2015_7_3_a1/ %G ru %F VYURM_2015_7_3_a1
N. D. Ivanova; V. E. Fedorov. Time nonlocal boundary value problem for a linearized phase field equations system. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 7 (2015) no. 3, pp. 10-15. http://geodesic.mathdoc.fr/item/VYURM_2015_7_3_a1/