Carbon impurities in paramagnetic FCC iron: ab initio simulation of energy parameters
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 7 (2015) no. 2, pp. 56-63 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Ab initio simulation of equilibrium structure and FCC-iron characteristics was carried out using WIEN2k software package. We propose a model that can realistically describe the paramagnetic state Fcc iron. Calculated the energy of dissolution of carbon and energy interaction between carbon atoms in fcc iron to the fourth configuration spheres. It is shown that in all spheres there is repulsion, and it is the highest in the second sphere and the lowest in the third coordination sphere.
Keywords: FCC-iron; first principle simulation; carbon impurity; WIEN2k; method LAPW.
@article{VYURM_2015_7_2_a6,
     author = {Ya. M. Ridnyi and A. A. Mirzoev and D. A. Mirzaev},
     title = {Carbon impurities in paramagnetic {FCC} iron: ab initio simulation of energy parameters},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {56--63},
     year = {2015},
     volume = {7},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2015_7_2_a6/}
}
TY  - JOUR
AU  - Ya. M. Ridnyi
AU  - A. A. Mirzoev
AU  - D. A. Mirzaev
TI  - Carbon impurities in paramagnetic FCC iron: ab initio simulation of energy parameters
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2015
SP  - 56
EP  - 63
VL  - 7
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VYURM_2015_7_2_a6/
LA  - ru
ID  - VYURM_2015_7_2_a6
ER  - 
%0 Journal Article
%A Ya. M. Ridnyi
%A A. A. Mirzoev
%A D. A. Mirzaev
%T Carbon impurities in paramagnetic FCC iron: ab initio simulation of energy parameters
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2015
%P 56-63
%V 7
%N 2
%U http://geodesic.mathdoc.fr/item/VYURM_2015_7_2_a6/
%G ru
%F VYURM_2015_7_2_a6
Ya. M. Ridnyi; A. A. Mirzoev; D. A. Mirzaev. Carbon impurities in paramagnetic FCC iron: ab initio simulation of energy parameters. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 7 (2015) no. 2, pp. 56-63. http://geodesic.mathdoc.fr/item/VYURM_2015_7_2_a6/

[1] D. E. Jiang, E. A. Carter, “Carbon dissolution and diffusion in ferrite and austenite from first principles”, Physical Review B, 67 (2003), 214103 | DOI

[2] M. Acet, E. F. Wassermann, K. Andersen et al., “The Role of the Nature of Magnetic Coupling on the Martensitic Transformation in $\mathrm{Fe}$-$\mathrm{Ni}$”, Journal de Physique IV France, 7:C5 (1997), 401–404

[3] R. J. Weiss, K. J. Tauer, “Components of the Thermodinamic Functions of Iron”, Physical Review, 102:6 (1956), 1491–1495 | DOI

[4] S. V. Okatov, V. N. Urtsev, M. I. Katsnelson et al., “Effect of magnetic state on the $\gamma$-$\alpha$ transition in iron: First-principles calculations of the bain transformation path”, Physical Review B, 79 (2009), 094111 | DOI

[5] B. L. Gyorffy, A. J. Pindor, J. Staunton et al., “A first-principles theory of ferromagnetic phase transitions in metals”, Journal of Physics F: Metal Physics, 15:6 (1985), 1337–1386 | DOI

[6] M. Marsman, J. Hafner, “Broken symmetries in the crystalline and magnetic structures of g-iron”, Physical Review B, 66 (2002), 224409 | DOI

[7] G. J. Shiflet, J. R. Bradley, H. I. Aaronson, “Further considerations on the thermodynamics of the proeutectoid ferrite reaction in $\mathrm{Fe}$-$\mathrm{C}$ alloys”, Metallurgical Transactions A, 15 (1984), 1287–1288 | DOI

[8] P. Gustafson, “Thermodynamic evaluation of the $\mathrm{Fe}$-$\mathrm{C}$ system”, Scandinavian Journal of Metallurgy, 14:5 (1985), 259–267

[9] Mogutnov B. M., Tomilin I. A., Shvartsman L. A., Thermodynamics of ferroalloys, Metallurgiya Publ., M., 1984, 206 pp. (in Russ.)

[10] J. A. Lobo, G. H. Geiger, “Thermodynamics of carbon in austenite and $\mathrm{Fe}$-$\mathrm{Mo}$ austenite”, Metallurgical Transactions A, 7:8 (1976), 1359–1364 | DOI

[11] D. J. Hepburn, D. Ferguson, S. Gardner, G. J. Ackland, “First-principles study of helium, carbon, and nitrogen in austenite, dilute austenitic iron alloys, and nickel”, Physical Review B, 88 (2013), 024115 | DOI

[12] D. W. Boukhvalov, Y. N. Gornostyrev, M. I. Katsnelson, A. I. Lichtenstein, “Magnetism and Local Distortions near Carbon Impurity in g-Iron”, Physical Review Letters, 99 (2007), 247205 | DOI

[13] J. A. Slane, C. Wolverton, R. Gibala, “Experimental and Theoretical Evidence for Carbon-Vacancy Binding in Austenite”, Metallurgical and Materials Transactions A, 35:8 (2004), 2239–2245 | DOI

[14] A. V. Ponomareva, Yu. N. Gornostyrev, I. A. Abrikosov, “Ab initio calculation of the solution enthalpies of substitutional and interstitial impurities in paramagnetic FCC $\mathrm{Fe}$”, Physical Review B, 90 (2014), 014439 | DOI

[15] Nadutov V. M., Interatomic interaction and distribution of interstitial atoms in iron-nitrogenuous and iron-carbon alloys, Dr. phys. and math. sci. synopsis of diss., IMF NAN Ukrainy im. G. V. Kurdyumova, Kiev, 1997, 55 pp. (in Russ.)

[16] Gavrilyuk V. G., Carbon distribution in steel, Naukova Dumka, Kiev, 1987, 208 pp. (in Russ.)

[17] K. Oda, H. Fujimura, H. Ino, “Local interactions in carbon-carbon and carbon-$\mathrm{M}$ ($\mathrm{M}$: $\mathrm{Al}$, $\mathrm{Mn}$, $\mathrm{Ni}$) atomic pairs in FCC $\gamma$-iron”, Journal of Physics: Condensed Matter, 6:3 (1994), 679 | DOI

[18] M. S. Blanter, “Interaction of interstitial carbon atoms in austenite”, Acta Metallurgica, 41 (1999), 7–8

[19] Mogutnov B. M., Tomilin N. A., Shvartsman L. A., Thermodynamics of iron-carbon alloys, Metallurgiya Publ., M., 1972, 328 pp. (in Russ.)

[20] Y. Mou, H. I. Aaronson, “The carbon-carbon interaction energy in alpha $\mathrm{Fe}$-$\mathrm{C}$ alloys”, Acta Metallurgica, 37:3 (1989), 757–765 | DOI

[21] Kozheurov V. A., Izvestiya VUZov. Chernaya metallurgiya, 1965, no. 2, 10–16 (in Russ.)

[22] W. W. Dunn, R. B. McLellan, “The Application of Quassi-chemical Solid Solution Model to Carbon Austenite”, Metall Trans., 1:5 (1970), 1263–1265

[23] R. B. Mclellan, “The $\mathrm{C}$-$\mathrm{C}$ interaction energy in iron-carbon solid solutions”, Acta Metallurgica, 35:8 (1987), 2151–2156 | DOI

[24] A. N. Timoshevskii, S. O. Yablonovskii, “Ab-initio modeling of the short range order in $\mathrm{Fe}$-$\mathrm{N}$ and $\mathrm{Fe}$-$\mathrm{C}$ austenitic alloys”, Functional Materials, 18:4 (2011), 517–522

[25] N. I. Medvedeva, M. S. Park, D. C. V. Aken, J. E. Medvedeva, “First-principles study of $\mathrm{Mn}$, $\mathrm{Al}$ and $\mathrm{C}$ distribution and their effect on stacking fault energies in FCC $\mathrm{Fe}$”, Journal of Alloys and Compounds, 582 (2014), 475–482 | DOI

[26] Ridnyi Ya. M., Mirzoev A. A., Mirzaev D. A., “Ab-initio calculation of interaction energies between carbon atoms in a antiferromagnetic double-layer FCC-iron”, Bulletin of South Ural State University. Series of “Mathematics. Mechanics. Physics”, 6:4 (2014), 53–58 (in Russ.)

[27] K. Schwarz, P. Blaha, G. K. H. Madsen, “Electronic structure calculations of solids using the WIEN2k package for material science”, Computer Physics Communications, 147 (2002), 71–76 | DOI

[28] S. Cottenier, Density Functional Theory and the family of (L)APW-methods: a step-by-step introduction, , 2004 http://www.wien2k.at/reg_user/textbooks/DFT_and_LAPW-2_cottenier.pdf

[29] H. J. Monkhorst, J. D. Pack, “Special points for Brillouin-zone integrations”, Physical Review B, 13:12 (1976), 5188–5192 | DOI

[30] Ridnyi Ya. M., Mirzoev A. A., Mirzaev D. A., “Ab-initio simulation of influence of short-range ordering carbon impurities on the energy of their dissolution in the FCC-iron”, Bulletin of South Ural State University. Series of “Mathematics. Mechanics. Physics”, 5:2 (2013), 108–116 (in Russ.)

[31] M. Onink, C. M. Brakman, F. D. Tichelaar et al., “The lattice parameters of austenite and ferrite in $\mathrm{Fe}$-$\mathrm{C}$ as functions of carbon concentration and temperature”, Scripta Metallurgica Et Materialia, 29:8 (1993), 1011–1016 | DOI

[32] Deyanov R. Z., Eremin N. N., Urusov V. S., ODSS (Ordered-Disordered-Solid-Solution) Ver.1.- binary. Calculation of unordered supercells for simulation of substitution solid solution, M., 2006–2007

[33] Ridnyi Ya. M., Mirzoev A. A., Mirzaev D. A., “Ab-initio simulation of dissoilution energy of carbon atom in the paramagnetic state of FCC-iron”, Bulletin of South Ural State University. Series of “Mathematics. Mechanics. Physics”, 6:3 (2014), 86–91 (in Russ.)