Cauchy and Goursat problems for differential equation of third order
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 7 (2015) no. 2, pp. 31-43 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Cauchy and Goursat problems for the hyperbolic equation of third order are considered. The theorem of the existence of the Riemann function is proved and on the basis of the aforementioned function solutions for the Cauchy and Goursat problems are introduced.
Keywords: Cauchy and Goursat problems; hyperbolic equation of third order; Riemann function.
@article{VYURM_2015_7_2_a3,
     author = {V. V. Karachik},
     title = {Cauchy and {Goursat} problems for differential equation of third order},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {31--43},
     year = {2015},
     volume = {7},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2015_7_2_a3/}
}
TY  - JOUR
AU  - V. V. Karachik
TI  - Cauchy and Goursat problems for differential equation of third order
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2015
SP  - 31
EP  - 43
VL  - 7
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VYURM_2015_7_2_a3/
LA  - ru
ID  - VYURM_2015_7_2_a3
ER  - 
%0 Journal Article
%A V. V. Karachik
%T Cauchy and Goursat problems for differential equation of third order
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2015
%P 31-43
%V 7
%N 2
%U http://geodesic.mathdoc.fr/item/VYURM_2015_7_2_a3/
%G ru
%F VYURM_2015_7_2_a3
V. V. Karachik. Cauchy and Goursat problems for differential equation of third order. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 7 (2015) no. 2, pp. 31-43. http://geodesic.mathdoc.fr/item/VYURM_2015_7_2_a3/

[1] Karachik V. V., The development of the theory of normed systems of functions and their application to the solution of the initial-boundary value problems for equations with differential derivatives, Dr. phys. and math. sci. diss., Tashkent, 2001, 213 pp.

[2] Munz G., Integral equations, GTTI Publ., M., 1934, 330 pp.

[3] Zhegalov V. I., “Three-dimensional analogue of the Goursat problem”, Non-classical equations and the equations of mixed type, Institut matematiki SO AN SSSR Publ., Novosibirsk, 1990, 94–98

[4] Bitsadze A. V., The equations of mathematical physics, Nauka Publ., M., 1976, 296 pp. (in Russ.)

[5] Vladimirov V. S., The equations of mathematical physics, Nauka Publ., M., 1981, 512 pp. (in Russ.)

[6] Karachik V. V., Method of normed systems of functions, Izdatel'skij centr YuUrGU, Chelyabinsk, 2014, 452 pp.

[7] V. V. Karachik, “On some special polynomials”, Proceedings of the American Mathematical Society, 132:4 (2004), 1049–1058 | DOI

[8] Karachik V. V., “Polynomial solutions to partial differential equations with constant coefficients, I”, Bulletin of South Ural State University. Series of “Mathematics. Mechanics. Physics”, 10(227):4 (2011), 4–17

[9] Karachik V. V., Antropova N. A., “Polynomial solutions of the Dirichlet problem for the biharmonic equation in the ball”, Differential Equations, 49:2 (2013), 251–256 | DOI

[10] Karachik V. V., “Method for constructing solutions of linear ordinary differential equations with constant coefficients”, Computational Mathematics and Mathematical Physics, 52:2 (2012), 219–234 | DOI