Inverse problem of determination of coefficient in the elliptic equation
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 7 (2015) no. 2, pp. 5-13 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The inverse problem of determination of coefficient in the elliptic equation in a rectangle is considered. Identification problem of unknown denseness of sources and coefficients lead to similar inverse problems. The theorem of uniqueness of the formulated inverse problem is proved using Karleman’s evaluation method. Researches are carried out in a class of continuously differentiable functions derivatives of which satisfy the Holder condition.
Keywords: inverse problem; elliptic equation.
@article{VYURM_2015_7_2_a0,
     author = {R. A. Aliyev},
     title = {Inverse problem of determination of coefficient in the elliptic equation},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {5--13},
     year = {2015},
     volume = {7},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2015_7_2_a0/}
}
TY  - JOUR
AU  - R. A. Aliyev
TI  - Inverse problem of determination of coefficient in the elliptic equation
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2015
SP  - 5
EP  - 13
VL  - 7
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VYURM_2015_7_2_a0/
LA  - ru
ID  - VYURM_2015_7_2_a0
ER  - 
%0 Journal Article
%A R. A. Aliyev
%T Inverse problem of determination of coefficient in the elliptic equation
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2015
%P 5-13
%V 7
%N 2
%U http://geodesic.mathdoc.fr/item/VYURM_2015_7_2_a0/
%G ru
%F VYURM_2015_7_2_a0
R. A. Aliyev. Inverse problem of determination of coefficient in the elliptic equation. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 7 (2015) no. 2, pp. 5-13. http://geodesic.mathdoc.fr/item/VYURM_2015_7_2_a0/

[1] Iskenderov A. D., Izvestiya AN Az. SSR, 1978, no. 2, 80–85 (in Russ.)

[2] Klibanov M. V., Differentsial'nye uravneniya, 20:11 (1984), 1947–1953 (in Russ.)

[3] J. Sylvester, G. Uhlmann, “A Global uniqueness theorem for an inverse boundary value problem”, Annals of Mathematics, 125 (1987), 153–169 | DOI

[4] Vabishchevich P. N., Differentsial'nye uravneniya, 24:12 (1988), 2125–2129 (in Russ.)

[5] Solov'ev V. V., Zhurnal vychislitel'noy matematiki i matematicheskoy fiziki, 47:8 (2007), 1365–1377 (in Russ.)

[6] R. Yang, Y. Ou, “Inverse coefficient problems for nonlinear elliptic equations”, ANZIAM, 49:2 (2007), 271–279 | DOI

[7] Vakhitov I. S., Dal'nevostochnyy matematicheskiy zhurnal, 10:2 (2010), 93–105 (in Russ.)

[8] Denisov A. M., Introduction into inverse problems theory, Nauka Publ., M., 1995, 206 pp. (in Russ.)

[9] Aliev R. A., “An Inverse Problem for Quasilinear Elliptic Equations”, Izvestiya of Saratov University. New Series. Series: Mathematics. Mechanics. Informatics, 11:1 (2011), 3–9

[10] Klibanov M. V., Sibirskiy matematicheskiy zhurnal, 27:5 (1986), 83–94

[11] Lavrent'ev M. M., Romanov V. G., Shishatskiy S. P., Illposed problems of mathematical physics and analysis, Nauka Publ., M., 1980, 286 pp. (in Russ.)

[12] Hörmander L., Linear partial differential operators, Academic Press, New York; Springer-Verlag, 1963