An approach to the comparison of fuzzy numbers in decision-making problems
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 7 (2015) no. 1, pp. 32-37 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In decision-making problems, when a decision maker has information about unmanageable factors in fuzzy numbers, the problem of its comparison appears. Nowadays, a lot of different methods of comparing fuzzy numbers have been proposed. However, none of them is universal. Moreover, almost each method has pitfalls such as the difficulty of interpretation and inconsistency with human intuition. In the decision making theory the character of the applied problem is a dominant factor of choosing the method of comparing fuzzy numbers. In this paper an approach of comparing fuzzy numbers has been proposed based on the comparison of $\alpha$-cuts. Conceptions of strong and soft preferences are proposed. According to these definitions trapezoidal and bell-shaped fuzzy numbers have been compared. This method leads to finding the solution in the lexicographic meaning of a certain multi-objective problem for some classes of fuzzy numbers. Geometrical interpretation has been given for trapezoidal and bell-shaped fuzzy numbers.
Keywords: fuzzy set; fuzzy number; comparison of fuzzy numbers; $\alpha$-cut.
@article{VYURM_2015_7_1_a4,
     author = {V. I. Ukhobotov and E. S. Mihailova},
     title = {An approach to the comparison of fuzzy numbers in decision-making problems},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {32--37},
     year = {2015},
     volume = {7},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2015_7_1_a4/}
}
TY  - JOUR
AU  - V. I. Ukhobotov
AU  - E. S. Mihailova
TI  - An approach to the comparison of fuzzy numbers in decision-making problems
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2015
SP  - 32
EP  - 37
VL  - 7
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURM_2015_7_1_a4/
LA  - ru
ID  - VYURM_2015_7_1_a4
ER  - 
%0 Journal Article
%A V. I. Ukhobotov
%A E. S. Mihailova
%T An approach to the comparison of fuzzy numbers in decision-making problems
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2015
%P 32-37
%V 7
%N 1
%U http://geodesic.mathdoc.fr/item/VYURM_2015_7_1_a4/
%G ru
%F VYURM_2015_7_1_a4
V. I. Ukhobotov; E. S. Mihailova. An approach to the comparison of fuzzy numbers in decision-making problems. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 7 (2015) no. 1, pp. 32-37. http://geodesic.mathdoc.fr/item/VYURM_2015_7_1_a4/

[1] L. A. Zadeh, “Fuzzy Sets”, Information and Control, 8 (1965), 338–353 | DOI

[2] P. Dutta, H. Boruah, T. Ali, “Fuzzy Arithmetic with and without using $\alpha$-cut method: A Comparative Study”, International Journal of Latest Trends in Computing, 2, March (2011), 99–107

[3] A. Bansal, “Trapezoidal Fuzzy Numbers (a.b.c.d.): Arithmetic Behavior”, International Journal of Physical and Mathematical Sciences, 2:1 (2011), 39–44

[4] S. Chen, C. Hwang, Fuzzy multiple attribute decision making methods and applications, Springer-Verlag New York Inc., Secaucus, NJ, USA, 1992

[5] Ukhobotov V. I., Shchichko P. V., “An approach to ranking fuzzy numbers”, Vestnik YuUrGU. Seriya “Matematicheskoe modelirovanie I programmirovanie”, 37(254):10 (2011), 54–62 (in Russ.)

[6] Gallyamov E. R., Ukhobotov V. I., “Computer implementation of operations with fuzzy numbers”, Vestnik YuUrGU. Seriya “Vychislitel'naya matematika i informatika”, 3:3 (2014), 97–108 (in Russ.)

[7] Ukhobotov V. I., The Selected Chapters of the Theory of Fuzzy Sets, Study guide, Publishing of Chelyabinsk State University, Chelyabinsk, 2011, 245 pp. (in Russ.)

[8] Smirnov V. I., The Course of Higher Mathematics, v. 2, Nauka Publ., M., 1974, 266 pp. (in Russ.)