@article{VYURM_2015_7_1_a2,
author = {A. V. Keller and J. K. Al-Delfi},
title = {Holomorphic degenerate groups of operators in {quasi-Banach} spaces},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {20--27},
year = {2015},
volume = {7},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2015_7_1_a2/}
}
TY - JOUR AU - A. V. Keller AU - J. K. Al-Delfi TI - Holomorphic degenerate groups of operators in quasi-Banach spaces JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2015 SP - 20 EP - 27 VL - 7 IS - 1 UR - http://geodesic.mathdoc.fr/item/VYURM_2015_7_1_a2/ LA - ru ID - VYURM_2015_7_1_a2 ER -
%0 Journal Article %A A. V. Keller %A J. K. Al-Delfi %T Holomorphic degenerate groups of operators in quasi-Banach spaces %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2015 %P 20-27 %V 7 %N 1 %U http://geodesic.mathdoc.fr/item/VYURM_2015_7_1_a2/ %G ru %F VYURM_2015_7_1_a2
A. V. Keller; J. K. Al-Delfi. Holomorphic degenerate groups of operators in quasi-Banach spaces. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 7 (2015) no. 1, pp. 20-27. http://geodesic.mathdoc.fr/item/VYURM_2015_7_1_a2/
[1] Sviridyuk G. A., “On the general theory of operator semigroups”, Russian Mathematical Surveys, 49:4 (1994), 45–74 | DOI
[2] R. E. Showalter, “The Sobolev type equations. I; II”, Appl. Anal., 5:1 (1975), 15–22 ; 2, 81–99 | DOI
[3] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston, 2003, 216 pp.
[4] Shestakov A. L., Keller A. V., Nazarova E. I., “Numerical Solution of the Optimal Measurement Problem”, Automation and Remote Control, 73:1 (2012), 97–104 | DOI
[5] Manakova N. A., Dylkov A. G., “Optimal Control of Solutions of Initial-Finish Problem for the Linear Sobolev Type Equations”, Bulletin of the South Ural State University. Series “Mathematical Modelling, Programming Computer Software”, 17(234):8 (2011), 113–114 (in Russ.)
[6] Sviridyuk G. A., Keller A. V., “Invariant spaces and dichotomies of solutions of a class of linear equations of Sobolev type”, Russian Math. (Iz. VUZ), 41:5 (1997), 57–65
[7] Sagadeeva M. A., Dichotomies of the Solutions for the Linear Sobolev Type Equations, Publishing center of SUSU, Chelyabinsk, 2012, 139 pp. (in Russ.)
[8] Zamyshlyaeva A. A., Linear Sobolev Type Equations of Hihg Order, Publishing center of SUSU, Chelyabinsk, 2012, 88 pp. (in Russ.)
[9] Fedorov V. E., “Holomorphic Solution Semigroups for Sobolev Type Equations in Locally Convex Spaces”, Sbornik: Mathematics, 195:8 (2004), 1205–1234 | DOI | DOI
[10] G. V. Demidenko, S. V. Uspenskii, Partial differential equations and systems not solvable with respect to the highest-order derivative, Marcel Dekker, Inc., New York–Basel–Hong Kong, 2003, 239 pp.
[11] Sveshnikov A. G., Al'shin A. B., Korpusov M. O., Pletner Yu. D., Linear and Nonlinear Equation of Sobolev Type, FizMatLit Publ., M., 2007, 736 pp. (in Russ.)
[12] N. Sidorov, B. Loginov, A. Sinithyn, M. Falaleev, Lyapunov–Shmidt Methods in Nonlinear Analysis and Applications, Kluwer Academic Publishers, Dordrecht–Boston–London, 2002, 548 pp.
[13] Bergh J., Lofstrom J., Interpolation Spaces. An Introduction, Springer-Verlag, Berlin–Heidelberg–New York, 1976, 207 pp.
[14] Al-Delfi J. K., “Quasi-Sobolev Spaces $l_p^m$”, Bulletin of South Ural State University. Series of “Mathematics. Mechanics. Physics”, 5:1 (2013), 107–109 (in Russ.)
[15] Sviridyuk G. A., Al-Delfi J. K., “The Laplace Quasi-Operator in the Quasi-Banach Spaces”, Differential Equations. Function Spaces. Approximation Theory, Abstracts of International Conference Dedicated to the 105th Anniversary of the Birthday of S. L. Sobolev (Novosibirsk, 2013), 247 (in Russ.)
[16] Al-Delfi J. K., “The Laplace' Quasi-operator in Quasi-Sobolev spaces”, Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Fiziko-matematicheskie nauki, 2013, no. 2(31), 13–16 (in Russ.) | DOI
[17] Sviridyuk G. A., Zagrebina S. A., “The Showalter–Sidorov problem as a Phenomena of the Sobolev type Equations”, Bulletin of Irkutsk State University. Series: “Mathematics”, 3:1 (2010), 104–125 (in Russ.)
[18] Sviridyuk G. A., Zagrebina S. A., “Nonclassical Models of Mathematical Physics”, Bulletin of the South Ural State University. Series “Mathematical Modelling, Programming Computer Software”, 40 (299) (2012), 7–18 (in Russ.)