Classification of knots in a thickened torus with minimal octahedron diagrams which are not contained in an annulus
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 7 (2015) no. 1, pp. 5-10 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The aim of this research is to tabulate knots in a thickened torus $\mathrm{T\times I}$ having minimal diagrams which are not contained in an annulus and correspond to the octahedron graph. Tabulation consists of three steps. First, a table of knot projections on $\mathrm{I}$ was compiled. Then, every projection was converted into a set of corresponding diagrams. Finally, using a generalized version of the Kauffman bracket as an invariant, duplicates were removed and all the knots obtained were proved to be different.
Keywords: knot; thickened torus; knot table.
@article{VYURM_2015_7_1_a0,
     author = {A. A. Akimova},
     title = {Classification of knots in a thickened torus with minimal octahedron diagrams which are not contained in an annulus},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {5--10},
     year = {2015},
     volume = {7},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2015_7_1_a0/}
}
TY  - JOUR
AU  - A. A. Akimova
TI  - Classification of knots in a thickened torus with minimal octahedron diagrams which are not contained in an annulus
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2015
SP  - 5
EP  - 10
VL  - 7
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURM_2015_7_1_a0/
LA  - ru
ID  - VYURM_2015_7_1_a0
ER  - 
%0 Journal Article
%A A. A. Akimova
%T Classification of knots in a thickened torus with minimal octahedron diagrams which are not contained in an annulus
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2015
%P 5-10
%V 7
%N 1
%U http://geodesic.mathdoc.fr/item/VYURM_2015_7_1_a0/
%G ru
%F VYURM_2015_7_1_a0
A. A. Akimova. Classification of knots in a thickened torus with minimal octahedron diagrams which are not contained in an annulus. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 7 (2015) no. 1, pp. 5-10. http://geodesic.mathdoc.fr/item/VYURM_2015_7_1_a0/

[1] Drobotukhina Yu. V., “Analog polinoma Dzhonsa dlya zatsepleniy v $\mathrm{RP^3}$ i obobshchenie teoremy Kaufmana–Murasugi”, Algebra i Analiz, 2:3 (1991), 613–630 (in Russ.)

[2] Yu. V. Drobotukhina, “Classification of links in $\mathrm{RP^3}$ with at most six crossings”, Advances in Soviet Mathematics, 18:1 (1994), 87–121

[3] B. Gabrovshek, M. Mroczkowskii, “Knots in the solid torus up to 6 crossings”, J. Knot Theory Ramifications, 21:11 (2012), 1250106, 43 pp. | DOI

[4] A. Bogdanov, V. Meshkov, A. Omelchenko, M. Petrov, “Enumerating the k-tangle projections”, J. Knot Theory Ramifications, 21:7 (2012), 1250069, 17 pp. | DOI

[5] J. Green, A table of virtual knots, http://katlas.math.toronto.edu/wiki/Main_Page

[6] Akimova A. A., Matveev S. V., “Classification of Low Complexity Knots in the Thickened Torus”, Vestnik Novosibirskogo gosudarstvennogo universiteta. Seriya: Matematika, mekhanika, informatika, 12:3 (2012), 10–21 (in Russ.)

[7] Akimova A. A., “Classification of knots in the thickened torus with minimal diagrams which are not in a circule and have five crossings”, Bulletin of South Ural State University. Series of “Mathematics. Mechanics. Physics”, 5:1 (2013), 8–11 (in Russ.)

[8] L. Kauffman, “State models and the Jones polynomial”, Topology, 26:3 (1987), 395–407 | DOI

[9] Prasolov V. V., Sosinskiy A. B., Knots, coupling, spit, and three-dimensional manifolds, MTsNMO Publ., M., 1997, 352 pp. (in Russ.)