Controllability of a non-classical model of mathematical physics
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 6 (2014) no. 4, pp. 5-12 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Necessary conditions of $\varepsilon$-controllability for the class of degenerate linear differential equations in Banach space with respect to the time derivative and with the radially bounded operator on the right side are obtained. The results are effectively applied to the research of $\varepsilon$-controllability of initial boundary-value problems for the non-classical equations of mathematical physics.
Keywords: controllability; semigroup of operators; equations of Sobolev type.
@article{VYURM_2014_6_4_a0,
     author = {O. A. Ruzakova},
     title = {Controllability of a non-classical model of mathematical physics},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {5--12},
     year = {2014},
     volume = {6},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2014_6_4_a0/}
}
TY  - JOUR
AU  - O. A. Ruzakova
TI  - Controllability of a non-classical model of mathematical physics
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2014
SP  - 5
EP  - 12
VL  - 6
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURM_2014_6_4_a0/
LA  - ru
ID  - VYURM_2014_6_4_a0
ER  - 
%0 Journal Article
%A O. A. Ruzakova
%T Controllability of a non-classical model of mathematical physics
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2014
%P 5-12
%V 6
%N 4
%U http://geodesic.mathdoc.fr/item/VYURM_2014_6_4_a0/
%G ru
%F VYURM_2014_6_4_a0
O. A. Ruzakova. Controllability of a non-classical model of mathematical physics. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 6 (2014) no. 4, pp. 5-12. http://geodesic.mathdoc.fr/item/VYURM_2014_6_4_a0/

[1] Sholokhovich F. A., Izvestiya Ural'skogo Gosudarstvennogo Universiteta, 10:1 (1998), 103–126 (in Russ.)

[2] Kurzhanskiy A. B., Differentsial'nye uravneniya, 5:9 (1969), 1715–1718 (in Russ.) | MR | Zbl

[3] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston–Köln–Tokyo, 2003, 216 pp. | MR | Zbl

[4] Sviridyuk G. A., DAN, 337:5 (1994), 581–584 (in Russ.) | Zbl

[5] Nefedov S. A., Sholokhovich F. A., Differentsial'nye uravneniya, 12:4 (1976), 653–657 (in Russ.) | MR | Zbl

[6] Shestakov A. L., Sviridyuk G. A., “A new approach to measurement of dynamically perturbed signals”, Bulletin of South Ural State University. Series “Mathematical Modelling, Programming Computer Software”, 16 (192) (2010), 116–120 (in Russ.) | Zbl

[7] Shestakov A. L., Keller A. V., Nazarova E. I., “Numerical solution of the optimal measurement problem”, Automation and Remote Control, 73:1 (2012), 97–104 | DOI | MR | MR

[8] Fedorov V. E., Ruzakova O. A., Differentsial'nye uravneniya, 38:8 (2002), 1137–1139 (in Russ.) | MR | Zbl

[9] Fedorov V. E., Ruzakova O. A., Izvestiya vuzov. Matematika, 2002, no. 7, 54–57 (in Russ.) | MR

[10] Fedorov V. E., Ruzakova O. A., Matematicheskie zametki, 74:4 (2003), 618–628 (in Russ.) | DOI | MR | Zbl

[11] Ruzakova O. A., Oleynik E. A., “On the controllability of linear sobolev type equations with relatively sectorial operator”, Bulletin of South Ural State University. Series “Mathematical Modelling, Programming Computer Software”, 5 (264):11 (2012), 54–61 (in Russ.) | Zbl

[12] Fedorov V. E., Non-classic equations of mathematical physics, IM SO RAN Publ., Novosibirsk, 2000, 32–40 (in Russ.)