Calculation of deformation for geometrically nonlinear plane structure made of perfect plastic material
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 6 (2014) no. 2, pp. 35-39 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A computational model given helps to find displacements of a structure, made of a perfect plastic material, using loads applied to this structure. On the other hand it can find loads applied to the structure using displacements given. The model includes geometrical, statical and physical relations and it is based on the finite element method where finite elements represent triangular simplexes.
Keywords: geometrical nonlinearity, perfect plastic material, pure bending, deformation.
@article{VYURM_2014_6_2_a5,
     author = {A. O. Scherbakova},
     title = {Calculation of deformation for geometrically nonlinear plane structure made of perfect plastic material},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {35--39},
     year = {2014},
     volume = {6},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2014_6_2_a5/}
}
TY  - JOUR
AU  - A. O. Scherbakova
TI  - Calculation of deformation for geometrically nonlinear plane structure made of perfect plastic material
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2014
SP  - 35
EP  - 39
VL  - 6
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VYURM_2014_6_2_a5/
LA  - ru
ID  - VYURM_2014_6_2_a5
ER  - 
%0 Journal Article
%A A. O. Scherbakova
%T Calculation of deformation for geometrically nonlinear plane structure made of perfect plastic material
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2014
%P 35-39
%V 6
%N 2
%U http://geodesic.mathdoc.fr/item/VYURM_2014_6_2_a5/
%G ru
%F VYURM_2014_6_2_a5
A. O. Scherbakova. Calculation of deformation for geometrically nonlinear plane structure made of perfect plastic material. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 6 (2014) no. 2, pp. 35-39. http://geodesic.mathdoc.fr/item/VYURM_2014_6_2_a5/

[1] K. Truesdell, A first course in rational continuum mechanics, The Johns Hopkins University, Baltimore, 1972, 264 pp.

[2] P. Chadwick, Continuum mechanics: concise theory and problems, 2 ed., Dover publications, 1998, 193 pp. | MR

[3] T. Belytschko, W. K. Lin, B. Moran, Nonlinear finite elements for continua and structures, John Wiley and sons, New York, 2000, 660 pp. | MR

[4] G. Mase, Theory and problems of continuum mechanics, McGraw-Hill Book Company, New-York, 1970, 221 pp.

[5] G. G. Weber, A. M. Lush, T. A. Zavaliangos, L. Anand, “An objective time-integration procedure for isotropic rate-independent rate-dependent elastic-plastic constitutive equations”, International journal of plasticity, 6 (1990), 701–744 | DOI | Zbl

[6] Sadakov O. S., “Finite deformations in mechanics of deformable solids”, Vestnik YuUrGU. Seriya «Matematika, fizika, khimiya», 6(46):6 (2005), 114–121 (in Russ.)

[7] Sadakov O. S., “To the calculation of tensed deformable state of the structure in geometrically nonlinear performance”, Snezhinsk and Science-2003. Modern Problems of Nuclear Science and Engineering, Proceedings of the International Conference, SGFTA, Snezhinsk, 2003, 73–74 (in Russ.)

[8] Buslaeva O. S., Sadakov O. S., Shapiro A. A., Nauchno-tekhnicheskie vedomosti SPbGTU, 2003, no. 3(33), 125–129 (in Russ.) | MR