Iterative factorization on fictitious continuation for the numerical solution of elliptic equation of the fourth order
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 6 (2014) no. 2, pp. 17-22 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The elliptic differential equation of the fourth order is considered under the mixed boundary conditions. The numerical solution is reduced to the solution of the system of linear algebraic equations with triangular matrices, in which quantity of nonzero elements in every line is less than three, by means of iterative factorization on fictitious continuation.
Keywords: iterative factorization, fictitious continuation.
@article{VYURM_2014_6_2_a2,
     author = {A. L. Ushakov},
     title = {Iterative factorization on fictitious continuation for the numerical solution of elliptic equation of the fourth order},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {17--22},
     year = {2014},
     volume = {6},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2014_6_2_a2/}
}
TY  - JOUR
AU  - A. L. Ushakov
TI  - Iterative factorization on fictitious continuation for the numerical solution of elliptic equation of the fourth order
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2014
SP  - 17
EP  - 22
VL  - 6
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VYURM_2014_6_2_a2/
LA  - ru
ID  - VYURM_2014_6_2_a2
ER  - 
%0 Journal Article
%A A. L. Ushakov
%T Iterative factorization on fictitious continuation for the numerical solution of elliptic equation of the fourth order
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2014
%P 17-22
%V 6
%N 2
%U http://geodesic.mathdoc.fr/item/VYURM_2014_6_2_a2/
%G ru
%F VYURM_2014_6_2_a2
A. L. Ushakov. Iterative factorization on fictitious continuation for the numerical solution of elliptic equation of the fourth order. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 6 (2014) no. 2, pp. 17-22. http://geodesic.mathdoc.fr/item/VYURM_2014_6_2_a2/

[1] Landau L. D., Lifshits E. M., Theory of Elasticity, Nauka Publ., M., 1965, 204 pp. (in Russ.) | MR

[2] Oganesyan L. A., Rukhovets L. A., Variational-difference methods for solving elliptic equations, AN ArmSSR Publ., Erevan, 1979, 235 pp. (in Russ.) | MR

[3] Ushakov A. L., “Updating iterative factorization for the numerical solution of two elliptic equations of the second order in rectangular area”, Vestnik YuUrGU. Seriya “Matematika. Mekhanika. Fizika”, 5:2 (2013), 88–93 (in Russ.)

[4] Ushakov A. L., An approximate solution of elliptic boundary value problem of fourth order, Chelyabinskiy gosudarstvennyy tekhnicheskiy universitet Publ., Chelyabinsk, 1997, 30 pp. (in Russ.)