Different approaches to solve inverse boundary value problems of thermal diagnostics
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, no. 7 (2012), pp. 60-67 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The projective regularization method is applied to some problems of thermal diagnostics. This problem is reduced to the generalized one. Numerical algorithm to solve this problem is obtained. The results are approved by model examples.
Keywords: method for the solution of operator equations, regularization method, projective regularization method, heat conduction equation, inverse problems of a thermal conduction.
@article{VYURM_2012_7_a7,
     author = {N. M. Yaparova},
     title = {Different approaches to solve inverse boundary value problems of thermal diagnostics},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {60--67},
     year = {2012},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2012_7_a7/}
}
TY  - JOUR
AU  - N. M. Yaparova
TI  - Different approaches to solve inverse boundary value problems of thermal diagnostics
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2012
SP  - 60
EP  - 67
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/VYURM_2012_7_a7/
LA  - ru
ID  - VYURM_2012_7_a7
ER  - 
%0 Journal Article
%A N. M. Yaparova
%T Different approaches to solve inverse boundary value problems of thermal diagnostics
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2012
%P 60-67
%N 7
%U http://geodesic.mathdoc.fr/item/VYURM_2012_7_a7/
%G ru
%F VYURM_2012_7_a7
N. M. Yaparova. Different approaches to solve inverse boundary value problems of thermal diagnostics. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, no. 7 (2012), pp. 60-67. http://geodesic.mathdoc.fr/item/VYURM_2012_7_a7/

[1] Ivanov V. K., Bull. Inst. Politech Iasi, 14:314 (1968), 71–78 | Zbl

[2] Alifanov O. M., Budnik S. A., Nenarokomov A. V., Netelev A. V., Teplovye protsessy v tekhnike, 2011, no. 8, 338–347 (in Russ.)

[3] M. J. Cialkowski, K. Grysa, “Trefftz method in solving the inverse problems”, J. Inv. Ill-Posed Problems, 18 (2010), 595–616 | DOI | MR | Zbl

[4] Korotkii A. I., Kovtunov D. A., Trudy IMM UrO RAN, 12, no. 2, 2006, 88–97 (in Russ.)

[5] Solodusha S. V., Automation and Remote Control, 72:6 (2011), 1264–1270 | DOI | MR | Zbl

[6] Tanana V. P., Yaparova N. M., Siberian J. of Numer. Mathematics, 9:4 (2006), 353–368 (in Russ.) | Zbl

[7] Tanana V. P., DAN, 407:3 (2006), 316–318 (in Russ.) | MR

[8] Tanana V. P., Siberian J. of Numer. Mathematics, 7:17 (2004), 117–132 (in Russ.) | MR | Zbl

[9] Von Gustav Doetsch, Anleitund zum praktischen Gebrauch der Laplace-Transformation und der $Z$-Transformation, R. Oldenbourg, Munchen–Wien, 1961, 256 pp. | MR | MR | Zbl