To the solution of a three-element boundary value problem with a Carleman shift for analytical functions in the nondegenerate case
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, no. 7 (2012), pp. 43-52 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article considers constructive algorithm to solve a three-element one-side boundary value problem with Carleman shift in classes of analytic functions of the unit disk in case when the problem is not reducible to a two-element boundary value problem without shift.
Keywords: three-element boundary value problem, analytic functions, Carleman shift, integral equation.
@article{VYURM_2012_7_a5,
     author = {K. M. Rasulov},
     title = {To the solution of a three-element boundary value problem with a {Carleman} shift for analytical functions in the nondegenerate case},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {43--52},
     year = {2012},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2012_7_a5/}
}
TY  - JOUR
AU  - K. M. Rasulov
TI  - To the solution of a three-element boundary value problem with a Carleman shift for analytical functions in the nondegenerate case
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2012
SP  - 43
EP  - 52
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/VYURM_2012_7_a5/
LA  - ru
ID  - VYURM_2012_7_a5
ER  - 
%0 Journal Article
%A K. M. Rasulov
%T To the solution of a three-element boundary value problem with a Carleman shift for analytical functions in the nondegenerate case
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2012
%P 43-52
%N 7
%U http://geodesic.mathdoc.fr/item/VYURM_2012_7_a5/
%G ru
%F VYURM_2012_7_a5
K. M. Rasulov. To the solution of a three-element boundary value problem with a Carleman shift for analytical functions in the nondegenerate case. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, no. 7 (2012), pp. 43-52. http://geodesic.mathdoc.fr/item/VYURM_2012_7_a5/

[1] Litvinchuk G. S., Boundary value problems and singular integral equations with shift, Nauka, M., 1977, 448 pp. (in Russ.) | MR | Zbl

[2] Rasulov K. M., Boundary value problems for polyanalytic functions and some applications, Izd-vo SGPU, Smolensk, 1998, 343 pp. (in Russ.)

[3] Gakhov F. D., Boundary value problems, Nauka, M., 1977, 640 pp. (in Russ.) | MR

[4] Muskhelishvili N. I., Singular integral equations, Nauka, M., 1968, 511 pp. (in Russ.) | MR

[5] Rasulov K. M., Izvestiia SmolGU, 2008, no. 2, 94–104 (in Russ.)

[6] Rasulov K. M., Vesnik of Yanka Kupala State University of Grodno. Series 2. Mathematics. Physics. Informatics, Computer Technology and its Control, 2010, no. 3(102), 31–37 (in Russ.)