Characteristics of $h$-homogeneity of a space
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, no. 7 (2012), pp. 31-32 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The criterion of $h$-homogeneity of a homogeneous metric space with $\mathrm{Ind}\, X = 0$ is proved. As a consequence we obtain two characteristics of $h$-homogeneity for metric spaces.
Keywords: homogeneous space, $h$-homogeneous space, $\pi$-base, homeomorphism.
Mots-clés : group
@article{VYURM_2012_7_a3,
     author = {S. V. Medvedev},
     title = {Characteristics of $h$-homogeneity of a space},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {31--32},
     year = {2012},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2012_7_a3/}
}
TY  - JOUR
AU  - S. V. Medvedev
TI  - Characteristics of $h$-homogeneity of a space
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2012
SP  - 31
EP  - 32
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/VYURM_2012_7_a3/
LA  - ru
ID  - VYURM_2012_7_a3
ER  - 
%0 Journal Article
%A S. V. Medvedev
%T Characteristics of $h$-homogeneity of a space
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2012
%P 31-32
%N 7
%U http://geodesic.mathdoc.fr/item/VYURM_2012_7_a3/
%G ru
%F VYURM_2012_7_a3
S. V. Medvedev. Characteristics of $h$-homogeneity of a space. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, no. 7 (2012), pp. 31-32. http://geodesic.mathdoc.fr/item/VYURM_2012_7_a3/

[1] Engelking R., General Topology, PWN, Warsaw, 1977, 626 pp. | MR | MR | Zbl

[2] T. Terada, “Spaces whose all nonempty clopen subspaces are homeomorphic”, Yokohama Math. J., 40 (1993), 87–93 | MR | Zbl