Pascal’s triangle and $p$-latin matrices
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, no. 7 (2012), pp. 17-30 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Properties of a special class of matrices arising in the analysis of binominal coefficients distribution in terms of a prime number modulus are considered. Formulae of elements distribution in the row of Pascal’s triangle in terms of a prime number modulus are obtained.
Mots-clés : Pascal’s triangle, latin matrices, binominal coefficient.
@article{VYURM_2012_7_a2,
     author = {V. V. Karachik},
     title = {Pascal{\textquoteright}s triangle and $p$-latin matrices},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {17--30},
     year = {2012},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2012_7_a2/}
}
TY  - JOUR
AU  - V. V. Karachik
TI  - Pascal’s triangle and $p$-latin matrices
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2012
SP  - 17
EP  - 30
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/VYURM_2012_7_a2/
LA  - ru
ID  - VYURM_2012_7_a2
ER  - 
%0 Journal Article
%A V. V. Karachik
%T Pascal’s triangle and $p$-latin matrices
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2012
%P 17-30
%N 7
%U http://geodesic.mathdoc.fr/item/VYURM_2012_7_a2/
%G ru
%F VYURM_2012_7_a2
V. V. Karachik. Pascal’s triangle and $p$-latin matrices. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, no. 7 (2012), pp. 17-30. http://geodesic.mathdoc.fr/item/VYURM_2012_7_a2/

[1] B. A. Bondarenko, Generalized Pascal Triangles and Pyramids: Their Fractals, Graphs and Applications, per. s rus., ed. R. S. Bollinger, The Fibonacci Association, Santa Clara, Calif., 1993 | Zbl

[2] Karachik V. V., Bondarenko B. A., “Distribution of Eulerian and Stirling numbers mod m in arithmetical triangles”, Vopposy vychislitel'noi i ppikladnoi matematiki, 1996, no. 102, 133–140 (in Russ.) | MR | Zbl

[3] V. V. Karachik, “P-latin matrices and Pascal's triangle modulo a prime”, The Fibonacci Quarterly, 34:4 (1996), 362–372 | MR | Zbl

[4] Karachik V. V., “Properties of Standardized $p$-Latin Matrices”, Uzbekskii zhurnal «Problemy informatiki i energetiki», 1992, no. 5–6, 9–14 (in Russ.)

[5] J. Denes, A. D. Keedwell, Latin Squares and Their Applications, Akad. Kiado, Budapest, 1974, 547 pp. | MR | Zbl

[6] E. Hexel, H. Sachs, “Counting Residues Modulo a Prime in Pascal's Triangle”, Indian J. Math., 20:2 (1978), 91–105 | MR | Zbl