@article{VYURM_2012_7_a2,
author = {V. V. Karachik},
title = {Pascal{\textquoteright}s triangle and $p$-latin matrices},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {17--30},
year = {2012},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2012_7_a2/}
}
V. V. Karachik. Pascal’s triangle and $p$-latin matrices. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, no. 7 (2012), pp. 17-30. http://geodesic.mathdoc.fr/item/VYURM_2012_7_a2/
[1] B. A. Bondarenko, Generalized Pascal Triangles and Pyramids: Their Fractals, Graphs and Applications, per. s rus., ed. R. S. Bollinger, The Fibonacci Association, Santa Clara, Calif., 1993 | Zbl
[2] Karachik V. V., Bondarenko B. A., “Distribution of Eulerian and Stirling numbers mod m in arithmetical triangles”, Vopposy vychislitel'noi i ppikladnoi matematiki, 1996, no. 102, 133–140 (in Russ.) | MR | Zbl
[3] V. V. Karachik, “P-latin matrices and Pascal's triangle modulo a prime”, The Fibonacci Quarterly, 34:4 (1996), 362–372 | MR | Zbl
[4] Karachik V. V., “Properties of Standardized $p$-Latin Matrices”, Uzbekskii zhurnal «Problemy informatiki i energetiki», 1992, no. 5–6, 9–14 (in Russ.)
[5] J. Denes, A. D. Keedwell, Latin Squares and Their Applications, Akad. Kiado, Budapest, 1974, 547 pp. | MR | Zbl
[6] E. Hexel, H. Sachs, “Counting Residues Modulo a Prime in Pascal's Triangle”, Indian J. Math., 20:2 (1978), 91–105 | MR | Zbl