The influence of effective pair potential hybridization on the liquid iron properties
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, no. 7 (2012), pp. 120-129 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A set of effective pair potentials for liquid iron at 1923 K was calculated by means of D. K. Belashchenko hybridization method. The present article illustrates the influence of a hybrid potential choice on the model of thermodynamics and structural properties. On the basis of the results obtained a criterion for the most adequate effective pair potential selection from a set of hybrid potentials is proposed.
Keywords: effective pair potential, computer simulation, disordered systems, molecular dynamics.
Mots-clés : liquid structure
@article{VYURM_2012_7_a16,
     author = {V. A. Starukhin and A. A. Mirzoev},
     title = {The influence of effective pair potential hybridization on the liquid iron properties},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {120--129},
     year = {2012},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2012_7_a16/}
}
TY  - JOUR
AU  - V. A. Starukhin
AU  - A. A. Mirzoev
TI  - The influence of effective pair potential hybridization on the liquid iron properties
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2012
SP  - 120
EP  - 129
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/VYURM_2012_7_a16/
LA  - ru
ID  - VYURM_2012_7_a16
ER  - 
%0 Journal Article
%A V. A. Starukhin
%A A. A. Mirzoev
%T The influence of effective pair potential hybridization on the liquid iron properties
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2012
%P 120-129
%N 7
%U http://geodesic.mathdoc.fr/item/VYURM_2012_7_a16/
%G ru
%F VYURM_2012_7_a16
V. A. Starukhin; A. A. Mirzoev. The influence of effective pair potential hybridization on the liquid iron properties. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, no. 7 (2012), pp. 120-129. http://geodesic.mathdoc.fr/item/VYURM_2012_7_a16/

[1] G. Toth, “Interactions from diffraction data: historical and comprehensive overview of simulation assisted methods”, J. Phys.: Condens. Matter, 19 (2007), 1–18

[2] W. Schommers, “A pair potential liquid rubidium from the pair correlation function”, Phys. Lett. A, 43 (1973), 157–158 | DOI

[3] W. Schommers, “Pair potentials in disordered many-particle systems: A study for liquid gallium”, Phys. Rev. A, 28 (1983), 3599–3605 | DOI

[4] R. L. Henderson, “A uniqueness theorem for fluid pair correlation functions”, Phys. Lett. A, 49 (1974), 197–198 | DOI

[5] J. T. Chayes, L. Chayes, “On the validity of the inverse conjecture in classical density functional theory”, J. Stat. Physics, 36 (1984), 471–488 | DOI | MR | Zbl

[6] D. K. Belashchenko, “Families of Intermolecular Potentials Corresponding to Identical Structure of Noncrystalline Substances in the Method of Molecular Dynamics”, Russian J. Phys. Chem., 78 (2004), 1621–1628

[7] D. K. Belashchenko, G. F. Syrykh, “Computer Simulation of Amorphous $\mathrm{Ni}$–$\mathrm{Nb}$ Alloys from Diffraction Data”, Inorganic Materials, 40 (2004), 483–493 | DOI

[8] Starukhin V. A., Belashchenko D. K., Mirzoev A. A., Vorontsov A. G., “The application of Schommers scheme for obtaining hybrid pair potential”, Rasplavy, 2012, no. 3, 57–67 (in Russ.)

[9] Starukhin V. A., Mirzoev A. A., Vorontsov A. G., “The application of Schommers scheme for the calculation of effective pair potential in NPT ensemble”, Vestnik YuUrGU. Seriia «Matematika. Mekhanika. Fizika», 10(227):4 (2011), 106–113 (in Russ.)

[10] Y. Waseda, The structure of Non-crystalline Materials. Liquids and Amorphous Solids, McGraw-Hill, New York, 1980, 325 pp.

[11] S. Plimpton, A. Thompson, P. Crozier, Large-scale Atomic/Molecular Massively Parallel Simulator, http://lammps.sandia.gov

[12] W. G. Hoover, “Canonical dynamics: Equilibrium phase-space distributions”, Phys. Rev. A, 31 (1985), 1695–1697 | DOI

[13] W. G. Hoover, “Constant pressure equations of motion”, Phys. Rev. A, 34 (1986), 2499–2503 | DOI | MR

[14] B. Patrice, F. Muller-Plathe, “The shear viscosity of molecular fluids: A calculation by reverse nonequilibrium molecular dynamics”, Journal Of Chemical Physics, 116:8 (2002), 3362–3369 | DOI

[15] Medvedev N. N., Voronoi–Delone method in the analysis of non-crystalline system structure, Izd-vo SO RAN, Novosibirsk, 2000, 214 pp. (in Russ.)

[16] Elanskii G. N., Elanskii D. G., The structure and properties of metallic melts, MGVMI, M., 2006, 228 pp. (in Russ.)

[17] Sobolev A. N., Mirzoev A. A., Fazovye perekhody, uporiadochennye sostoianiia i novye materialy, 12 (2009), 1–4 (in Russ.)