The analysis of the stress strain state of a heterogeneous plastic stripe
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, no. 7 (2012), pp. 11-16 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The stress strain state of a cross-section plastic layer in a stretched stripe at flat deformation is studied on the basis of the use of different section hypotheses. Obvious analytic expressions for calculation of a stress state in a plastic layer are received. The comparative analysis of influence of different hypotheses on the results is carried out.
Keywords: plastic layer, flat deformation, heterogeneous joint, stress state, hypotheses of sections.
@article{VYURM_2012_7_a1,
     author = {V. L. Dil'man and A. I. Nosacheva},
     title = {The analysis of the stress strain state of a heterogeneous plastic stripe},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {11--16},
     year = {2012},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2012_7_a1/}
}
TY  - JOUR
AU  - V. L. Dil'man
AU  - A. I. Nosacheva
TI  - The analysis of the stress strain state of a heterogeneous plastic stripe
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2012
SP  - 11
EP  - 16
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/VYURM_2012_7_a1/
LA  - ru
ID  - VYURM_2012_7_a1
ER  - 
%0 Journal Article
%A V. L. Dil'man
%A A. I. Nosacheva
%T The analysis of the stress strain state of a heterogeneous plastic stripe
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2012
%P 11-16
%N 7
%U http://geodesic.mathdoc.fr/item/VYURM_2012_7_a1/
%G ru
%F VYURM_2012_7_a1
V. L. Dil'man; A. I. Nosacheva. The analysis of the stress strain state of a heterogeneous plastic stripe. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, no. 7 (2012), pp. 11-16. http://geodesic.mathdoc.fr/item/VYURM_2012_7_a1/

[1] Dil'man V. L., Mathematical models of the strain state of heterogeneous thin-walled cylindrical shells, Izdatel'stvo YuUrGU, Chelyabinsk, 2007, 202 pp. (in Russ.)

[2] Dil'man V. L., “Research of the mathematical models of the strain state of the thin-walled heterogeneous cylindrical shells based on analytical methods”, Vestnik YuUrGU. Seriya «Matematicheskoe modelirovanie i programmirovanie», 17(150):3 (2009), 36–58 (in Russ.) | Zbl

[3] Dil'man V. L., Mathematical modelling of the strain state of heterogeneous thin-walled cylindrical shells, Dissertation theses, YuUrGU, Chelyabinsk, 2011, 32 pp. (in Russ.)

[4] Dil'man V. L., “About strain-deformed state at stretching of a plastic layer with two axes of symmetry”, Izvestiya Rossijskoj akademii nauk, Mehanika tverdogo tela, 2001, no. 6, 115–124 (in Russ.) | MR

[5] Dil'man V. L., “About one model describing the strain state in a round core”, Obozrenie prikladnoj i promishlennoj matematiki, 11:2 (2004), 793–794 (in Russ.)

[6] Dil'man V. L., “Mathematical modeling strain-deformed state of less strong cross-section layer of a plastic strip at hypotheses of cross-section sections”, Obozrenie prikladnoj i promishlennoj matematiki, 17:2 (2010), 262–263 (in Russ.)

[7] Dil'man V. L., “The strain state and static strength of a plastic layer at flat deformation”, Problemi mashinostroeniya i nadezhnostti mashin, 2005, no. 4, 38–48 (in Russ.)

[8] Dil'man V. L., “About one mathematical model of the strain state of a plastic layer at flat deformation”, Vestnik YuUrGU. Seriya «Matematika, fizika, khimiya», 6(46):6 (2005), 19–23 (in Russ.) | Zbl