A one-type control problem with a convex goal in case of disturbance
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, no. 6 (2012), pp. 24-29 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The authors analyze a one-type problem of positioning of a phase point at a preset time on the convex closed set with minimization of an integral of the convex by standards of control function. There is a disturbance in motion equations; the quantity of its norm is less than the predetermined number. The problem is analyzed within the theory of differential games. The authors prove the existence of an optimal control and give the algorithm of its plotting.
Keywords: differential game, control, alternating integral.
@article{VYURM_2012_6_a3,
     author = {V. I. Ukhobotov and D. V. Gushchin},
     title = {A one-type control problem with a convex goal in case of disturbance},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {24--29},
     year = {2012},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2012_6_a3/}
}
TY  - JOUR
AU  - V. I. Ukhobotov
AU  - D. V. Gushchin
TI  - A one-type control problem with a convex goal in case of disturbance
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2012
SP  - 24
EP  - 29
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VYURM_2012_6_a3/
LA  - ru
ID  - VYURM_2012_6_a3
ER  - 
%0 Journal Article
%A V. I. Ukhobotov
%A D. V. Gushchin
%T A one-type control problem with a convex goal in case of disturbance
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2012
%P 24-29
%N 6
%U http://geodesic.mathdoc.fr/item/VYURM_2012_6_a3/
%G ru
%F VYURM_2012_6_a3
V. I. Ukhobotov; D. V. Gushchin. A one-type control problem with a convex goal in case of disturbance. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, no. 6 (2012), pp. 24-29. http://geodesic.mathdoc.fr/item/VYURM_2012_6_a3/

[1] Isaacs R., Differential Games, John Wiley and Sons, 1965 | MR | MR | Zbl

[2] Pontrjagin L. S., “Linear differential games of pursuit”, Matematicheskij sbornik. Novaja serija, 112:3 (1980), 307–330 (in Russ.) | MR | Zbl

[3] Krasovskij N. N., Subbotin A. I., Positional Differential Games, Nauka, M., 1974, 456 pp. (in Russ.) | MR | Zbl

[4] Ukhobotov V. I., “The same type of differential games with convex purpose”, Trudy Instituta Matematiki I Mekhaniki UrO RAN, 16, no. 5, 2010, 196–204 (in Russ.)

[5] Ukhobotov V. I., Gushchin D. V., “Single-Type Differential Games with Convex Integral Payoff”, Proceedings of the Steklov Institute of Mathematics, 275, 2011, 178 | DOI | Zbl

[6] Ljusternik L. A., Sobolev V. I., Elements of functional analysis, Nauka, M., 1965, 520 pp. (in Russ.) | MR

[7] Kolmogorov A. N., Fomin S. V., Elements of the Theory of Functions and Functional Analysis, Nauka, M., 1972, 496 pp. (in Russ.) | MR

[8] H. Hermes, “The Generilized Differential Equation $\dot{x}\in R(t,x)$”, Advances in Math., 4:29 (1970), 149–169 | DOI | MR | Zbl

[9] Pshenichnyj B. N., Convex analysis and extremal problems, Nauka, M., 1980, 319 pp. (in Russ.) | MR | Zbl

[10] Filippov A. F., “On some questions in the theory of optimal control”, Vestnik MGU. Serija “Matematika, mehanika”, 1959, no. 2, 25–32 (in Russ.) | Zbl