About solution of the boundary inverse problem for a parabolic equation by means of subsidiary boundary conditions method
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, no. 5 (2011), pp. 68-76 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The author analyses the problem of recovery of boundary condition using additional information about parabolic equation solution. An approximate solution of the posed problem is done by the subsidiary boundary conditions method with choice of the regularization parameter by the Lavrentiev scheme [1] and one of the schemes of posteriori choice regularization parameter. The author obtains an order precise error evaluation of the built approximate solution at one of the uniform regularization classes.
Keywords: inverse problem, approximate method, error evaluation.
@article{VYURM_2011_5_a9,
     author = {E. V. Tabarintseva},
     title = {About solution of the boundary inverse problem for a parabolic equation by means of subsidiary boundary conditions method},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {68--76},
     year = {2011},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2011_5_a9/}
}
TY  - JOUR
AU  - E. V. Tabarintseva
TI  - About solution of the boundary inverse problem for a parabolic equation by means of subsidiary boundary conditions method
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2011
SP  - 68
EP  - 76
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VYURM_2011_5_a9/
LA  - ru
ID  - VYURM_2011_5_a9
ER  - 
%0 Journal Article
%A E. V. Tabarintseva
%T About solution of the boundary inverse problem for a parabolic equation by means of subsidiary boundary conditions method
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2011
%P 68-76
%N 5
%U http://geodesic.mathdoc.fr/item/VYURM_2011_5_a9/
%G ru
%F VYURM_2011_5_a9
E. V. Tabarintseva. About solution of the boundary inverse problem for a parabolic equation by means of subsidiary boundary conditions method. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, no. 5 (2011), pp. 68-76. http://geodesic.mathdoc.fr/item/VYURM_2011_5_a9/

[1] Lavrent'ev M. M., About some ill-defined problems of mathematical physics, Sibirskoe otdelenie AN SSSR, Novosibirsk, 1962, 92 pp.

[2] Tanana V. P., Dokl. RAN, 407:3 (2006), 316–318 (in Russ.)

[3] Il'in A. M., The equations of mathematical physics, Izdatel'skij centr ChelGU, Chelyabinsk, 2005, 171 pp. (in Russ.)

[4] Ivanov V. K., Mel'nikova I. V., Filinkov A. I., Differential-operator equations and ill-defined problems, Nauka, M., 1995, 176 pp. (in Russ.)

[5] Tanana V. P., Tabarintseva E. V., Sibirskij zhurnal industrial'noj matematiki, 8:1(21) (2005), 129–142 (in Russ.)

[6] Vladimirov V. S., The equations of mathematical physics, Nauka, M., 1971, 512 pp. (in Russ.)

[7] S. Pereverzev, E. Schock, “On the adaptive selection of the parameter in regularization of ill-posed problems”, SIAM J. Numer. Anal., 43:5 (2005), 2060–2076 | DOI

[8] Kolmogorov A. N., Fomin S. V., Elements of Function Theory and Functional Analysis, Nauka, M., 1989, 623 pp. (in Russ.)

[9] Vilenkin N. Ja., Special functions and group representation theory, Nauka, M., 1965, 588 pp. (in Russ.)

[10] Dieudonne J., Foundations of Modern Analysis, Academic Press, New York, 1960, 361 pp.