Inverse boundary problem for a partial differential equation of fourth order with integral condition
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, no. 5 (2011), pp. 51-56
Cet article a éte moissonné depuis la source Math-Net.Ru
In the article the author analyses one inverse boundary problem for a partial differential equation of fourth order with integral condition. First, an original problem is reduced to the equivalent problem, the theorem of existence and uniqueness of solution is proved for the latter. Then, using these facts the author proves existence and uniqueness of classical solution of the original problem.
Keywords:
inverse problem, differential equations, uniqueness, classical solution.
Mots-clés : existence
Mots-clés : existence
@article{VYURM_2011_5_a6,
author = {Ya. T. Mehraliyev},
title = {Inverse boundary problem for a partial differential equation of fourth order with integral condition},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {51--56},
year = {2011},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2011_5_a6/}
}
TY - JOUR AU - Ya. T. Mehraliyev TI - Inverse boundary problem for a partial differential equation of fourth order with integral condition JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2011 SP - 51 EP - 56 IS - 5 UR - http://geodesic.mathdoc.fr/item/VYURM_2011_5_a6/ LA - ru ID - VYURM_2011_5_a6 ER -
%0 Journal Article %A Ya. T. Mehraliyev %T Inverse boundary problem for a partial differential equation of fourth order with integral condition %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2011 %P 51-56 %N 5 %U http://geodesic.mathdoc.fr/item/VYURM_2011_5_a6/ %G ru %F VYURM_2011_5_a6
Ya. T. Mehraliyev. Inverse boundary problem for a partial differential equation of fourth order with integral condition. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, no. 5 (2011), pp. 51-56. http://geodesic.mathdoc.fr/item/VYURM_2011_5_a6/
[1] Samarskii A. A., Dif. uravneniia, 16:11 (1980), 1925–1935
[2] J. R. Cannon, “The solution of the heat equation subject to the specification of energy”, Quart. Appl. Math., 5:21 (1963), 155–160
[3] Ionkin N. I., Dif. uravneniia, 13:2 (1977), 294–304
[4] Nakhushev A. M., Dif. uravneniia, 18:1 (1982), 72–81
[5] Gordeziani D. G., Avalishvili G. A., Mat. modelirovanie, 12:1 (2000), 94–103
[6] Pul'kina L. S., Dif. uravneniia, 40:7 (2004), 887–892
[7] Khudaverdiev K. I., Veliev A. A., Investigation of one-dimensional mixed problems for a class of third-order pseudohyperbolic equations with nonlinear right-hand side of the operator, Chashyogly, Baku, 2010, 168 pp.