The finite element method use for large displacements calculations of plane linear-elastic structures
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, no. 5 (2011), pp. 83-91 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A proposed version of the finite element method can find large displacements of a plane linearelastic structure with given nodal loads, and conversely, nodal loads at the given displacements. A calculation model includes geometrical, static and physical relations (Hooke's law). The calculation showed that several different deformed positions of the structure may correspond to the same loads. To verify the proposed model, the pure bending of a beam was calculated with large displacements taken into account. Analysis of the results showed the adequacy of the proposed model. At that the results differ markedly from the ANSYS solution.
Keywords: geometric nonlinearity, large displacements, finite deformations, pure bending, plane stress-strain state.
@article{VYURM_2011_5_a11,
     author = {A. O. Scherbakova},
     title = {The finite element method use for large displacements calculations of plane linear-elastic structures},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {83--91},
     year = {2011},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2011_5_a11/}
}
TY  - JOUR
AU  - A. O. Scherbakova
TI  - The finite element method use for large displacements calculations of plane linear-elastic structures
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2011
SP  - 83
EP  - 91
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VYURM_2011_5_a11/
LA  - ru
ID  - VYURM_2011_5_a11
ER  - 
%0 Journal Article
%A A. O. Scherbakova
%T The finite element method use for large displacements calculations of plane linear-elastic structures
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2011
%P 83-91
%N 5
%U http://geodesic.mathdoc.fr/item/VYURM_2011_5_a11/
%G ru
%F VYURM_2011_5_a11
A. O. Scherbakova. The finite element method use for large displacements calculations of plane linear-elastic structures. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, no. 5 (2011), pp. 83-91. http://geodesic.mathdoc.fr/item/VYURM_2011_5_a11/

[1] Truesdell C. A., A first course in rational continuum mechanics, The Johns Hopkins University, Baltimore, 1972

[2] P. Chadwick, Continuum mechanics: concise theory and problems, 2 ed., Dover publications, 1998, 193 pp.

[3] T. Belytschko, W. K. Lin, B. Moran, Nonlinear finite elements for continua and structures, John Wiley and sons, New York, 2000, 660 pp.

[4] Mase G. E., Theory and problems of continuum mechanics, Schaum's Outline Series, Mcgraw-hill Book Company, New-York, 1970, 221 pp.

[5] G. G. Weber, A. M. Lush, T. A. Zavaliangos, L. Anand, “An objective time-integration procedure for isotropic rate-independent rate-dependent elasticplastic constitutive equations”, International journal of plasticity, 6 (1990), 701–744 | DOI

[6] ANSYS — a general purpose finite element program. Rev. 5.0, Swanson analysis system inc., Houston, PA, 1996, 510 pp.

[7] Sadakov O. S., Vestnik YuUrGU, serija «Matematika, fizika, khimija», 6(46):6 (2005), 114–121 (in Russ.)

[8] R. G. Douglas, “On majorization, factorization, and range inclusion of operators on Hilbert space”, Proc. Amer. Math. Soc., 17 (1966), 413–415 | DOI

[9] G. Sobczyk, “Hyperbolic number plane”, College mathematics journal, 26 (1995), 268–280 | DOI

[10] Scherbakova A. O., Sadakov O. S., Shul'zhenko S. I., “Application of the Mohr circles for solving the problem of polar decomposition under plane stress”, Vestnik YuUrGU. Serija «Matematika. Mehanika. Fizika», 9(185):2 (2010), 21–26 (in Russ.)