Trigonometrical profile of the velocity of the shear flow of the viscous fluid
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, no. 5 (2011), pp. 77-82 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new exact analytical solution for stationary hydrodynamics equations are given with account of external resistance force. Basic elements of the research: relaxation properties in the shear flow; vorticity at small and large velocity gradients; diffusive rate of movement of vortex.
Keywords: resistance force, vorticity diffusion, indicator function, stress relaxation.
Mots-clés : Couette flow
@article{VYURM_2011_5_a10,
     author = {O. N. Shablovsky},
     title = {Trigonometrical profile of the velocity of the shear flow of the viscous fluid},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {77--82},
     year = {2011},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2011_5_a10/}
}
TY  - JOUR
AU  - O. N. Shablovsky
TI  - Trigonometrical profile of the velocity of the shear flow of the viscous fluid
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2011
SP  - 77
EP  - 82
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VYURM_2011_5_a10/
LA  - ru
ID  - VYURM_2011_5_a10
ER  - 
%0 Journal Article
%A O. N. Shablovsky
%T Trigonometrical profile of the velocity of the shear flow of the viscous fluid
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2011
%P 77-82
%N 5
%U http://geodesic.mathdoc.fr/item/VYURM_2011_5_a10/
%G ru
%F VYURM_2011_5_a10
O. N. Shablovsky. Trigonometrical profile of the velocity of the shear flow of the viscous fluid. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, no. 5 (2011), pp. 77-82. http://geodesic.mathdoc.fr/item/VYURM_2011_5_a10/

[1] Sedov L. I., Continuum mechanics, v. 1, Nauka, M., 1973, 536 pp. (in Russ.)

[2] Astarita G., Marrucci G., Principles of non-Newtonian fluid mechanics, McGhaw-Hill, 1974

[3] Lojcjanskij L. G., Izv. AN SSSR. Mehanika zhidkosti i gaza, 1982, no. 2, 5–19 (in Russ.)

[4] Kornilov V. I., Spatial wall turbulence flow in a corner configurations, Nauka. Sibirskaja izdatel'skaja firma RAN, Novosibirsk, 2000, 399 pp. (in Russ.)

[5] Gledzer E. B., Dolzhanskij F. V., Obukhov A. M., Systems of hydrodynamic type and their application, Nauka, M., 1981, 368 pp. (in Russ.)

[6] Obukhov A. M., “Kolmogorov flow and laboratory simulation of it”, Russian Mathematical Surveys, 38:4 (1983), 113–126 | DOI

[7] Dolzhanskii F. V., Krymov V. A., Manin D. Yu., “Stability and vortex structures of quasi-two-dimensional shear flows”, Sov. Phys. Usp., 33:7 (1990), 495–520 | DOI | DOI

[8] Dolzhanskii F. V., “On the mechanical prototypes of fundamental hydrodynamic invariants and slow manifolds”, Phys. Usp. Vol., 48, 1205–1234 | DOI | DOI

[9] Kartavyh A. V., Mil'vidskij M. G., Ginkin V. P., Zabud'ko M. A., Naumenko O. M., Poverhnost'. Rentgenovskie, sinhrotronnye i nejtronnye issledovanija, 2004, no. 6, 91–98

[10] Shablovskij O. N., “Nonlinear wave equations and sources of energy competition in twocomponent systems”, Proceedings, The fundamental physical and mathematical problems and modeling of technical and technological systems, 13, Janus-K., M., 2010, 78–89

[11] Shablovskij O. N., Vortex dynamics and heat transfer in a viscous fluid, GGTU im. P. O. Sukhogo, Gomel', 2001, 142 pp.

[12] M. Wosnik, L. Castillo, W. K. George, “A theory for turbulent pipe and channel flows”, J. Fluid Mech., 421 (2000), 115–145 | DOI

[13] Dynnikova G. Ja., Izv. RAN. Mehanika zhidkosti i gaza, 2003, no. 5, 11–19