The inversion procedure for ordinary differential equation's linear boundary problem
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, no. 5 (2011), pp. 12-17
Cet article a éte moissonné depuis la source Math-Net.Ru
Differential equations with boundary conditions specified with linear functionals are considered. Solvability of this problem was analyzed. A new technique for computational procedure was described.
Keywords:
differential equation, boundary problem, non-local boundary conditions, Green function.
@article{VYURM_2011_5_a1,
author = {Yu. S. Asfandiyarova},
title = {The inversion procedure for ordinary differential equation's linear boundary problem},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {12--17},
year = {2011},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2011_5_a1/}
}
TY - JOUR AU - Yu. S. Asfandiyarova TI - The inversion procedure for ordinary differential equation's linear boundary problem JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2011 SP - 12 EP - 17 IS - 5 UR - http://geodesic.mathdoc.fr/item/VYURM_2011_5_a1/ LA - ru ID - VYURM_2011_5_a1 ER -
%0 Journal Article %A Yu. S. Asfandiyarova %T The inversion procedure for ordinary differential equation's linear boundary problem %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2011 %P 12-17 %N 5 %U http://geodesic.mathdoc.fr/item/VYURM_2011_5_a1/ %G ru %F VYURM_2011_5_a1
Yu. S. Asfandiyarova. The inversion procedure for ordinary differential equation's linear boundary problem. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, no. 5 (2011), pp. 12-17. http://geodesic.mathdoc.fr/item/VYURM_2011_5_a1/
[1] Granovskii V. A., Dynamic measurements: Principles of metrological support, Energoatomizdat, L., 1984, 224 pp. (in Russ.)
[2] Ivanov V. K., Vasin V. V., Tanana V. P., Theory of linear ill-posed problems and its applications, Nauka, M., 1978, 206 pp. (in Russ.)
[3] Tikhomirov V. M., Some questions in approximation theory, Izdatel'stvo Moskovskogo universiteta, M., 1976, 304 pp. (in Russ.)
[4] Schaefer H., Topological vector spaces, Macmillan, 1966, 294 pp.
[5] Naimark M. A., Linear Differential Operators, Nauka, M., 1969, 528 pp. (in Russ.)
[6] V. I. Zalyapin, H. V. Kharitonova, S. V. Ermakov, “Inverse problem of the measurements theory”, Inverse problems, Design and Optimization Symposium (Miami, Florida, USA, April 16–18, 2007), 91–96