The example of the bijective mapping $f: \mathbb{R}\to\mathbb{R}$ such that $f$ is everywhere discontinuous, but an inverse of the $f$ is continuous at a countable set of points
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, no. 4 (2011), pp. 38-39 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we consider the example of the bijective mapping $f: \mathbb{R}\to\mathbb{R}$ such that $f$ is everywhere discontinuous, but an inverse of the $f$ is continuous at a countable set of points.
Keywords: everywhere discontinuous function, an inverse function.
@article{VYURM_2011_4_a4,
     author = {A. Yu. Evnin},
     title = {The example of the bijective mapping $f: \mathbb{R}\to\mathbb{R}$ such that $f$ is everywhere discontinuous, but an inverse of the $f$ is continuous at a countable set of~points},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {38--39},
     year = {2011},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2011_4_a4/}
}
TY  - JOUR
AU  - A. Yu. Evnin
TI  - The example of the bijective mapping $f: \mathbb{R}\to\mathbb{R}$ such that $f$ is everywhere discontinuous, but an inverse of the $f$ is continuous at a countable set of points
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2011
SP  - 38
EP  - 39
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURM_2011_4_a4/
LA  - ru
ID  - VYURM_2011_4_a4
ER  - 
%0 Journal Article
%A A. Yu. Evnin
%T The example of the bijective mapping $f: \mathbb{R}\to\mathbb{R}$ such that $f$ is everywhere discontinuous, but an inverse of the $f$ is continuous at a countable set of points
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2011
%P 38-39
%N 4
%U http://geodesic.mathdoc.fr/item/VYURM_2011_4_a4/
%G ru
%F VYURM_2011_4_a4
A. Yu. Evnin. The example of the bijective mapping $f: \mathbb{R}\to\mathbb{R}$ such that $f$ is everywhere discontinuous, but an inverse of the $f$ is continuous at a countable set of points. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, no. 4 (2011), pp. 38-39. http://geodesic.mathdoc.fr/item/VYURM_2011_4_a4/

[1] B. P. Demidovich, Sbornik zadach i uprazhnenii po matematicheskomu analizu, ACT, M., 2009, 624 pp.

[2] L. D. Kudryavtsev, Kurs matematicheskogo analiza, v. 1, Vyssh. shkola, M., 1981, 687 pp.