The Markushevich problem in the class of automorphic functions for arbitrary circle
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, no. 4 (2011), pp. 29-37
Cet article a éte moissonné depuis la source Math-Net.Ru
In the article an explicit method for solution the Markushevich boundary value problem in the class of automorphic functions with respect of Fuchsian group $\Gamma$ of the second kind is suggested. The boundary condition of the problem is given on the main circle from which all limit points of the group are deleted. The the problem is found in closed form under additional restriction on the coefficients of the problem: the function $a(t)/(b(t)+1)$ is analytic in the domain $D_-$ and is automorphic with respect $\Gamma$ in this the domain.
Keywords:
boundary problems for analytic functions, the Markushevich boundary problem, the automorphic functions.
@article{VYURM_2011_4_a3,
author = {A. A. Patrushev},
title = {The {Markushevich} problem in the class of automorphic functions for arbitrary circle},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {29--37},
year = {2011},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2011_4_a3/}
}
TY - JOUR AU - A. A. Patrushev TI - The Markushevich problem in the class of automorphic functions for arbitrary circle JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2011 SP - 29 EP - 37 IS - 4 UR - http://geodesic.mathdoc.fr/item/VYURM_2011_4_a3/ LA - ru ID - VYURM_2011_4_a3 ER -
%0 Journal Article %A A. A. Patrushev %T The Markushevich problem in the class of automorphic functions for arbitrary circle %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2011 %P 29-37 %N 4 %U http://geodesic.mathdoc.fr/item/VYURM_2011_4_a3/ %G ru %F VYURM_2011_4_a3
A. A. Patrushev. The Markushevich problem in the class of automorphic functions for arbitrary circle. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, no. 4 (2011), pp. 29-37. http://geodesic.mathdoc.fr/item/VYURM_2011_4_a3/
[1] F. D. Gakhov, “Vyrozhdennye sluchai osobykh integralnykh uravnenii s yadrom Koshi”, Differentsialnye uravneniya, 2:2 (1966), 533–544
[2] V. V. Silvestrov, “Kraevaya zadacha Gilberta dlya odnoi beskonechnoi oblasti v klasse avtomorfnykh funktsii”, Tr. seminara po kraevym zadacham, Izd-vo Kazanskogo un-ta, 1980, 180–194
[3] V. V. Silvestrov, L. I. Chibrikova, “K voprosu ob effektivnosti resheniya kraevoi zadachi Rimana dlya avtomorfnykh funktsii”, Izv. vuzov. Matematika, 1978, no. 12, 117–121
[4] R. Ford, Avtomorfnye funktsii, ONTI, M.–L., 1936, 340 pp.
[5] L. I. Chibrikova, “Kraevaya zadacha Rimana dlya avtomorfnykh funktsii v sluchae gruppy s dvumya invariantami”, Izv. vuzov. Matematika, 1961, no. 6, 121–131