Ab initio modeling of vacancy-point defects interaction in BCC iron
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, no. 4 (2011), pp. 114-119 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Ab initio modeling of the hydrogen and vacancy-solute atom complex interaction in BCC iron are carried out. The equilibrium position and hydrogen energy trap are obtained. It was shown, that a hydrogen bond with the vacancy-solute atom complex is mainly determined by the hydrogen-vacancy interaction.
Mots-clés : ab initio, BCC iron
Keywords: hydrogen, point defects.
@article{VYURM_2011_4_a17,
     author = {A. V. Ursaeva and M. S. Rakitin and G. E. Ruzanova and A. A. Mirzoev},
     title = {Ab initio modeling of vacancy-point defects interaction in {BCC} iron},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {114--119},
     year = {2011},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2011_4_a17/}
}
TY  - JOUR
AU  - A. V. Ursaeva
AU  - M. S. Rakitin
AU  - G. E. Ruzanova
AU  - A. A. Mirzoev
TI  - Ab initio modeling of vacancy-point defects interaction in BCC iron
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2011
SP  - 114
EP  - 119
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURM_2011_4_a17/
LA  - ru
ID  - VYURM_2011_4_a17
ER  - 
%0 Journal Article
%A A. V. Ursaeva
%A M. S. Rakitin
%A G. E. Ruzanova
%A A. A. Mirzoev
%T Ab initio modeling of vacancy-point defects interaction in BCC iron
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2011
%P 114-119
%N 4
%U http://geodesic.mathdoc.fr/item/VYURM_2011_4_a17/
%G ru
%F VYURM_2011_4_a17
A. V. Ursaeva; M. S. Rakitin; G. E. Ruzanova; A. A. Mirzoev. Ab initio modeling of vacancy-point defects interaction in BCC iron. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, no. 4 (2011), pp. 114-119. http://geodesic.mathdoc.fr/item/VYURM_2011_4_a17/

[1] B. A. Kolachev, Vodorodnaya khrupkost metallov, Metallurgiya, M., 1985, 216 pp.

[2] G. G. Nelson, Vodorodnoe okhrupchivanie. Okhrupchivanie konstruktsionnykh stalei i splavov, Metallurgiya, M., 1988, 552 pp.

[3] V. A. Goltsov, “Materialovedenie — znachenie i mesto v vodorodnoi ekonomike”, Vodorodnaya obrabotka materialov, Sb. inform. materialov II Mezhdunarod. konf. «VOM-98» (1998), 10–12

[4] R. P. Gangloff, Hydrogen effects on material behavior, TMS, Warrendale, PA, 2005, 447 pp.

[5] V. I. Arkharov, A. A. Kralina, “O vliyanii primesi palladiya k zhelezu na ego pronitsaemost dlya vodoroda”, FMM, 8:1 (1959), 45–52

[6] V. I. Arkharov, A. A. Kralina, L. I. Kvater, P. V. Sklyuev, “O vozmozhnosti snizheniya sklonnosti stali k flokenoobrazovaniyu posredstvom malykh dobavok palladiya”, Izv. AN SSSR. Metally, 1967, no. 1, 105–111

[7] Y. Fukai, N. Okuma, “Evidence of Copious Vacancy Formation in Ni and Pd under a High Hydrogen Pressure”, Jpn. J. Appl. Phys., 32:2 (1993), 1256

[8] M. Iwamoto, Y. Fukai, “Superabundant Vacancy Formation in Iron under High Hydrogen Pressures: Thermal Desorption Spectroscopy”, Mater. Trans. JIM, 40 (1999), 606 | DOI

[9] D. S. Sholl, J. A. Steckel, Density functional theory, John Wiley Sons, Inc., Hoboken–New Jersey, 2009, 238 pp.

[10] http://www.wien2k.at/reg_user/textbooks/usersguide.pdf

[11] http://fys.kuleuven.be/iks/nvsf/publications/DFT_and_LAPW.pdf

[12] A. A. Mirzoev, M. M. Yalalov, M. S. Rakitin, “Zavisimost tochnosti TB-LMTO rascheta ot kolichestva $k$-tochek: vliyanie parametra smeshivaniya iteratsii po skheme Broidena”, Vestnik YuUrGU. Seriya «Matematika, fizika, khimiya», 6(46):6 (2005), 103–105

[13] A. V. Ursaeva, G. E. Ruzanova, A. A. Mirzoev, “Vybor optimalnykh parametrov dlya postroeniya maksimalno tochnoi modeli OTsK-zheleza”, Vestnik YuUrGU. Seriya «Matematika. Mekhanika. Fizika», 9(185):2 (2010), 97–101

[14] D. E. Jiang, E. A. Carter, “Diffusion of interstitial hydrogen into and through bcc Fe from first principles”, Phys. Rev. B, 70 (2004), 064102 | DOI

[15] J. P. Hirth, “Effect of hydrogen on the properties of iron and steel”, Metal. Trans., 11A:6 (1980), 861–890 | DOI

[16] Ullmaier H. (ed.), Atomic Defects in Metals, Landolt-Börnstein, 25, Springer-Verlag, Berlin, 1991, 509 pp.

[17] T. Ohnuma, N. Soneda, M. Iwasawa, “First-principles calculations of vacancy-solute element interactions in body-centered cubic iron”, Acta Mater., 57 (2009), 5947–5955 | DOI

[18] W. A. Counts, C. Wolverton, R. Gibala, “First-principles energetic of hydrogen traps in $\alpha$-Fe: Point defects”, Acta Mater., 58 (2010), 4730–4741 | DOI

[19] S. M. Myers, “Hydrogen interaction with defect in crystalline solids”, Reviews of Modern Physics, 64:2 (1992), 559–617 | DOI

[20] Y. Teteyama, T. Ohno, “Stability and clusterization of hydrogen-vacancy complexes in $\alpha$-Fe: An ab initio study”, Phys. Rev. B, 67 (2003), 174105, 10 pp. | DOI

[21] P. Olsson, T. P. Klaver, C. Domain, “Ab initio study of solute transition-metal interactions with point defects in bcc Fe”, Phys. Rev. B, 81 (2010), 054102, 12 pp. | DOI