Numerical study of free vibrations of a sessile drop
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, no. 4 (2011), pp. 72-76 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The mathematical modeling of the flows that appear in a viscous liquid sessile drop after its equilibrium state is disturbed has been carried out. The free oscillation's frequency and the decay coefficient are obtained for different liquids. The comparison of the numerical results with the analytical theory describing the vibrations of a semispherical free-force drop has been developed.
Mots-clés : surface tension
Keywords: sessile droplet, computer simulation.
@article{VYURM_2011_4_a11,
     author = {A. E. Korenchenko and A. J. Ilimbaeva and V. P. Beskachko},
     title = {Numerical study of free vibrations of a sessile drop},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {72--76},
     year = {2011},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2011_4_a11/}
}
TY  - JOUR
AU  - A. E. Korenchenko
AU  - A. J. Ilimbaeva
AU  - V. P. Beskachko
TI  - Numerical study of free vibrations of a sessile drop
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2011
SP  - 72
EP  - 76
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURM_2011_4_a11/
LA  - ru
ID  - VYURM_2011_4_a11
ER  - 
%0 Journal Article
%A A. E. Korenchenko
%A A. J. Ilimbaeva
%A V. P. Beskachko
%T Numerical study of free vibrations of a sessile drop
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2011
%P 72-76
%N 4
%U http://geodesic.mathdoc.fr/item/VYURM_2011_4_a11/
%G ru
%F VYURM_2011_4_a11
A. E. Korenchenko; A. J. Ilimbaeva; V. P. Beskachko. Numerical study of free vibrations of a sessile drop. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, no. 4 (2011), pp. 72-76. http://geodesic.mathdoc.fr/item/VYURM_2011_4_a11/

[1] I. Egry, E. Ricci, R. Novakovic, S. Ozawa, “Surface tension of liquid metals and alloys”, Advances in Colloid and Interface Science, 159 (2010), 198–212 | DOI

[2] Lord Rayleigh, “Capillary phenomena of jets”, Proc. Roy. Soc. London A, 29 (1879), 71–79 | DOI

[3] S. Chandrasekhar, “The oscillations of viscous liquid globe”, Proc. Lond. Math. Soc., 9 (1959), 141–149 | DOI

[4] E. P. Emets, G. Yu. Kolomeitsev, V. V. Shirokov, “Opredeleniya vyazko-uprugikh kharakteristik materialov pri vysokikh temperaturakh”, Materialy nauchnoi sessii MIFI, 2006, 34–35

[5] J. H. Moon, B. H. Kang, “The lowest oscillation mode of a pendant drop”, Phys. Fluids, 18 (2006), 021702 | DOI

[6] T. Tsukada, M. Sato, N. Imaishi et al., “A theoretical and experimental study on the oscillation of a hanging drop”, J. Chem. Eng. Jpn., 20 (1987), 88–93 | DOI

[7] I. Egry, H. Giffard, S. Schneider, “The oscillating drop technique revisited”, Meas. Sci. Technol., 16 (2005), 426–431 | DOI

[8] A. E. Korenchenko, V. P. Beskachko, “Kolebaniya kapli vyazkoi zhidkosti, ogranichennoi dvumya ploskostyami”, Vestnik YuUrGU. Seriya «Matematika, fizika, khimiya», 7(62):7 (2006), 104–108

[9] O. M. Belotserkovskii, Chislennoe modelirovanie v mekhanike sploshnykh sred, Nauka, M., 1984, 519 pp.

[10] D. Khimmelblau, Prikladnoe nelineinoe programmirovanie, Mir, M., 1975, 602 pp.