Keywords: harmonic polynomials, linear partial differential equations.
@article{VYURM_2011_4_a0,
author = {V. V. Karachik},
title = {Polynomial solutions {\cyrt}{\cyro} partial differential equations with constant {coefficients~I}},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {4--17},
year = {2011},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2011_4_a0/}
}
TY - JOUR AU - V. V. Karachik TI - Polynomial solutions то partial differential equations with constant coefficients I JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2011 SP - 4 EP - 17 IS - 4 UR - http://geodesic.mathdoc.fr/item/VYURM_2011_4_a0/ LA - ru ID - VYURM_2011_4_a0 ER -
%0 Journal Article %A V. V. Karachik %T Polynomial solutions то partial differential equations with constant coefficients I %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2011 %P 4-17 %N 4 %U http://geodesic.mathdoc.fr/item/VYURM_2011_4_a0/ %G ru %F VYURM_2011_4_a0
V. V. Karachik. Polynomial solutions то partial differential equations with constant coefficients I. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, no. 4 (2011), pp. 4-17. http://geodesic.mathdoc.fr/item/VYURM_2011_4_a0/
[1] K. Zweiling, Grundlagen einer Theorie der biharmonishen Polynome, Verlag Technik, Berlin, 1952, 128 pp.
[2] A. V. Bitsadze, “K teorii garmonicheskikh funktsii”, Trudy Tbilisskogo universiteta, 84 (1962), 35–37
[3] E. P. Miles, E. Williams, “Basic sets of polynomials for the iterated Laplace and wave equations”, Duke Math. Journ., 26:1 (1959), 35–40 | DOI
[4] “Wärmpolynome-Modell fur besondere Losungssysteme bei linearen partiellen Differentialgleichungen / W. Watzlawek”, Berichte Math.-Statist. Sekt. Forschungszentrum Graz., 211 (1983), 1–34
[5] G. N. Hile, A. Stanoyevitch, “Polynomial solutions to Cauchy problems for complex Bessel operators”, Complex Variables, 50:7–11 (2005), 547–574 | DOI
[6] B. A. Bondarenko, Bazisnye sistemy polinomialnykh i kvazipolinomialnykh reshenii uravnenii v chastnykh proizvodnykh, FAN, Tashkent, 1987, 127 pp.
[7] P. Pedersen, “A basis for polynomial solutions to the systems of linear constant coefficient PDE's”, Advances Math., 117 (1996), 0005, 157–163 | DOI
[8] V. V. Karachik, N. A. Antropova, “O reshenii neodnorodnogo poligarmonicheskogo uravneniya i neodnorodnogo uravneniya Gelmgoltsa”, Differentsialnye uravneniya, 46:3 (2010), 384–395
[9] V. V. Karachik, “Continuity of polynomial solutions with respect to the coefficient of the higher derivative”, Indian Journal of Pure and Applied Mathematics, 28:9 (1997), 1229–1234
[10] V. V. Karachik, “Postroenie polinomialnykh reshenii differentsialnykh uravnenii s postoyannymi koeffitsientami”, Differentsialnye uravneniya, 27:3 (1991), 534–535
[11] S. M. Nikolskii, “Granichnaya zadacha dlya polinomov”, Trudy matematicheskogo instituta RAN, 227 (1999), 223–236
[12] I. Stein, G. Veis, Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974, 331 pp.
[13] V. V. Karachik, “O polinomialnykh resheniyakh uravnenii Lyame”, Matematicheskie trudy, 5:2 (2002), 155–169
[14] S. Leng, Algebra, Mir, M., 1968, 564 pp.
[15] V. V. Karachik, N. A. Antropova, “O reshenii neodnorodnogo poligarmonicheskogo uravneniya i neodnorodnogo uravneniya Gelmgoltsa”, Differentsialnye uravneniya, 46:3 (2010), 384–395
[16] V. V. Karachik, “Ob odnom predstavlenii analiticheskikh funktsii garmonicheskimi”, Matematicheskie trudy, 10:2 (2007), 142–162
[17] V. V. Karachik, “Normalized system of functions with respect to the Laplace operator and its applications”, Journal of Mathematical Analysis and Applications, 287:2 (2003), 577–592 | DOI