Considering the geometrycal nonlinearity in calculation of inelastic deformation of structures. Decomposition of strains
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, no. 3 (2010), pp. 45-50 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article shows splitting of a deformation on a reversible and an irreversible component when considering the uniaxial stress state. The irreversible deformation is defined by a plastic lengthening which has been accumulated during the whole history of the deformation. The reversible (thermoelastic) deformation cannot be divided into an elastic deformation and a thermal one. Two examples of variable thermomechanical loading of a rod are shown.
Keywords: geometrical nonlinearity, elastic deformation, thermal deformation, plastic deformation, thermomechanical loading.
@article{VYURM_2010_3_a6,
     author = {O. S. Sadakov and A. O. Scherbakova},
     title = {Considering the geometrycal nonlinearity in calculation of inelastic deformation of structures. {Decomposition} of strains},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {45--50},
     year = {2010},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2010_3_a6/}
}
TY  - JOUR
AU  - O. S. Sadakov
AU  - A. O. Scherbakova
TI  - Considering the geometrycal nonlinearity in calculation of inelastic deformation of structures. Decomposition of strains
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2010
SP  - 45
EP  - 50
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VYURM_2010_3_a6/
LA  - ru
ID  - VYURM_2010_3_a6
ER  - 
%0 Journal Article
%A O. S. Sadakov
%A A. O. Scherbakova
%T Considering the geometrycal nonlinearity in calculation of inelastic deformation of structures. Decomposition of strains
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2010
%P 45-50
%N 3
%U http://geodesic.mathdoc.fr/item/VYURM_2010_3_a6/
%G ru
%F VYURM_2010_3_a6
O. S. Sadakov; A. O. Scherbakova. Considering the geometrycal nonlinearity in calculation of inelastic deformation of structures. Decomposition of strains. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, no. 3 (2010), pp. 45-50. http://geodesic.mathdoc.fr/item/VYURM_2010_3_a6/

[1] E. H. Lee, D. T. Liu, “Finite strain elastic-plastic theory with application to plane-wave analysis”, J. Appl. Phys., 38, 19–27 | DOI

[2] H. Stumpf, “Constitutive model and incremental shakedown analysis in finite elastoplasticity”, Inelastic behavior of structures under variable loads, 1995, 293–307 | DOI | Zbl

[3] O. S. Sadakov, “K raschetam napryazhenno-deformirovannogo sostoyaniya konstruktsii v geometricheski nelineinoi postanovke”, Trudy Mezhdunarodnoi konferentsii «Snezhinsk i nauka-2003. Sovremennye problemy atomnoi nauki i tekhniki», SGFTA, Snezhinsk, 2003, 73–74

[4] O. S. Sadakov, A. A. Shapiro, “O korrektnosti resheniya geometricheski nelineinykh zadach paketom MKE”, Vestnik YuUrGU. Seriya «Matematika, fizika, khimiya», 8(24):4 (2003), 72–77

[5] O. S. Buslaeva, O. S. Sadakov, A. A. Shapiro, “Kontseptsiya laboratornoi sistemy otscheta v geometricheski i fizicheski nelineinykh zadachakh”, Matematicheskoe modelirovanie i kraevye zadachi, Trudy Vserossiiskoi nauchnoi konferentsii (26–28 maya 2004 goda), v. 1, Samarskii gosudarstvennyi tekhnicheskii universitet, 2004, 46–48