Stability cone for the retarded linear matrix differential equation
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, no. 3 (2010), pp. 33-37

Voir la notice de l'article provenant de la source Math-Net.Ru

Some surface in the three-dimensional space, named a stability cone is constructed. The necessary and sufficient condition of asymptotic stability of the matrix equation $\dot{x}(t)+Ax(t)+Bx(t-\tau)=0$ for random order matrixes which is connected with whether there are the auxiliary points which depend only on $A$ and $B$ matrix eigenvalues and on retardation value in a stability cone is proved. The matrixes $A$$B$ are required a joint triangulability.
Keywords: retorted differential equations, asymptotic stability, stability cone.
@article{VYURM_2010_3_a4,
     author = {T. N. Khokhlova},
     title = {Stability cone for the retarded linear matrix differential equation},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {33--37},
     publisher = {mathdoc},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2010_3_a4/}
}
TY  - JOUR
AU  - T. N. Khokhlova
TI  - Stability cone for the retarded linear matrix differential equation
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2010
SP  - 33
EP  - 37
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VYURM_2010_3_a4/
LA  - ru
ID  - VYURM_2010_3_a4
ER  - 
%0 Journal Article
%A T. N. Khokhlova
%T Stability cone for the retarded linear matrix differential equation
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2010
%P 33-37
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VYURM_2010_3_a4/
%G ru
%F VYURM_2010_3_a4
T. N. Khokhlova. Stability cone for the retarded linear matrix differential equation. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, no. 3 (2010), pp. 33-37. http://geodesic.mathdoc.fr/item/VYURM_2010_3_a4/