Stability cone for the retarded linear matrix differential equation
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, no. 3 (2010), pp. 33-37 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Some surface in the three-dimensional space, named a stability cone is constructed. The necessary and sufficient condition of asymptotic stability of the matrix equation $\dot{x}(t)+Ax(t)+Bx(t-\tau)=0$ for random order matrixes which is connected with whether there are the auxiliary points which depend only on $A$ and $B$ matrix eigenvalues and on retardation value in a stability cone is proved. The matrixes $A$, $B$ are required a joint triangulability.
Keywords: retorted differential equations, asymptotic stability, stability cone.
@article{VYURM_2010_3_a4,
     author = {T. N. Khokhlova},
     title = {Stability cone for the retarded linear matrix differential equation},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {33--37},
     year = {2010},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2010_3_a4/}
}
TY  - JOUR
AU  - T. N. Khokhlova
TI  - Stability cone for the retarded linear matrix differential equation
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2010
SP  - 33
EP  - 37
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VYURM_2010_3_a4/
LA  - ru
ID  - VYURM_2010_3_a4
ER  - 
%0 Journal Article
%A T. N. Khokhlova
%T Stability cone for the retarded linear matrix differential equation
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2010
%P 33-37
%N 3
%U http://geodesic.mathdoc.fr/item/VYURM_2010_3_a4/
%G ru
%F VYURM_2010_3_a4
T. N. Khokhlova. Stability cone for the retarded linear matrix differential equation. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, no. 3 (2010), pp. 33-37. http://geodesic.mathdoc.fr/item/VYURM_2010_3_a4/

[1] K. Gu, V. Kharitonov, J. Chen, Stability of time-delay systems, Springer, 2003, 376 pp.

[2] L. Idels, M. Kipnis, “Stability criteria for a nonlinear nonautonomous system with delays”, Applied Mathematical Modelling, 33:5 (2009), 2293–2297 | DOI | MR | Zbl

[3] A. I. Kiryanen, Ustoichivost sistem s posledeistviem i ikh prilozheniya, Izd-vo SPbU, 1994, 235 pp.

[4] A. I. Kiryanen, K. V. Galunova, “Ustoichivost uravneniya $\dot{x}(t)=\alpha x(t-h)+\beta x(t)$ s kompleksnymi koeffitsientami”, Uravneniya v chastnykh proizvodnykh, LGPI im. A. I. Gertsena, 1989, 65–72

[5] T. Mori, N. Fukuma, M. Kuwahara, “Simple stability criteria for single and composite linear systems with time delay”, Int. J. Control., 34 (1981), 1175–1184 | DOI | MR | Zbl

[6] T. Mori, H. Kokame, “Stability of $\dot{x}(t)=Ax(t)+Bx(t-\tau)$”, IEEE Trans. Autom. Control, 34:4 (1989), 460–462 | DOI | MR | Zbl

[7] Shuenn-Shyang Wang, “Further results on stability of $\dot{x}(t)=Ax(t)+Bx(t-\tau)$”, Systems Control Letters, 19:2 (1992), 165–168 | DOI | MR | Zbl

[8] Z. I. Rekhlitskii, “Ob ustoichivosti reshenii nekotorykh lineinykh differentsialnykh uravnenii v banakhovom prostranstve”, Izv. AN SSSR, 111 (1956), 29–32 | MR | Zbl

[9] H. Matsunaga, “Stability Regions for Linear Delay Differential Equations with Four Parameters”, International Journal of Qualitative Theory of Differential Equations and Applications, 3:1–2 (2009), 99–107 | Zbl

[10] R. Horn, C. Johnson, Matrix Theory, Cambridge Univ. Press, 1986, 561 pp.

[11] N. V. Azbelev, P. M. Simonov, “Ustoichivost uravnenii s zapazdyvayuschim argumentom”, Izv. vuzov. Matematika, 1997, no. 6, 3–16