Conditions of the survival of population in Nicholson's models with delay
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, no. 3 (2010), pp. 29-32 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Nicholson's model with delay describing dynamics of the magnitude of population is considered. Properties of the model solutions are analyzed, equal apartness of solutions from zero is proved and a lower estimation of decisions as function of the model parameters is found. A two-band model constructed on the basis of Nicholson's model is analyzed. The lower estimations of solutions with various parameters combinations are found.
Keywords: dynamics of the magnitude ofpopulation, apartness from zero, Nicholson's model.
@article{VYURM_2010_3_a3,
     author = {A. D. Khokhlov},
     title = {Conditions of the survival of population in {Nicholson's} models with delay},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {29--32},
     year = {2010},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2010_3_a3/}
}
TY  - JOUR
AU  - A. D. Khokhlov
TI  - Conditions of the survival of population in Nicholson's models with delay
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2010
SP  - 29
EP  - 32
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VYURM_2010_3_a3/
LA  - ru
ID  - VYURM_2010_3_a3
ER  - 
%0 Journal Article
%A A. D. Khokhlov
%T Conditions of the survival of population in Nicholson's models with delay
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2010
%P 29-32
%N 3
%U http://geodesic.mathdoc.fr/item/VYURM_2010_3_a3/
%G ru
%F VYURM_2010_3_a3
A. D. Khokhlov. Conditions of the survival of population in Nicholson's models with delay. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, no. 3 (2010), pp. 29-32. http://geodesic.mathdoc.fr/item/VYURM_2010_3_a3/

[1] A. J. Nicholson, “An outline of the dynamics of animal populations”, Austral. J. Zoo, 1954, no. 2, 9–65 | DOI

[2] J. K. Hale, P. Waltman, “Persistence in infinite dimensional systems”, SIAM J. Math. Anal., 20 (1989), 388–395 | DOI | MR | Zbl

[3] L. Idels, M. Kipnis, “Stability criteria for a nonlinear nonautonomous system with delays”, Applied Mathematical Modelling, 33:5 (2009), 2293–2297 | DOI | MR | Zbl

[4] R. Bellman, K. Kuk, Differentsialno-raznostnye uravneniya, Mir, M., 1967, 548 pp. | MR | Zbl