About solving one boundary inverse problem for parabolic equation
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, no. 3 (2010), pp. 21-28
Voir la notice de l'article provenant de la source Math-Net.Ru
The problem of restoration of boundary conditions of the third genre using additional information about decision of the parabolic equation is considered. The method of the approached solution of the set problem with a choice of parameter of regularization using M. M. Lavrenteva's scheme [1] and one of schemes of a posteriori choice of regularization parameter is considered. The exact in order estimation of error of the constructed approximate answer based on one of the classes of the uniform regularization is received.
Keywords:
inverse problem, approximate answer method
Mots-clés : error estimation.
Mots-clés : error estimation.
@article{VYURM_2010_3_a2,
author = {E. V. Tabarintseva},
title = {About solving one boundary inverse problem for parabolic equation},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {21--28},
publisher = {mathdoc},
number = {3},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2010_3_a2/}
}
TY - JOUR AU - E. V. Tabarintseva TI - About solving one boundary inverse problem for parabolic equation JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2010 SP - 21 EP - 28 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VYURM_2010_3_a2/ LA - ru ID - VYURM_2010_3_a2 ER -
%0 Journal Article %A E. V. Tabarintseva %T About solving one boundary inverse problem for parabolic equation %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2010 %P 21-28 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VYURM_2010_3_a2/ %G ru %F VYURM_2010_3_a2
E. V. Tabarintseva. About solving one boundary inverse problem for parabolic equation. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, no. 3 (2010), pp. 21-28. http://geodesic.mathdoc.fr/item/VYURM_2010_3_a2/