Almansi decompositions for non-singular second order partial differential operators
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, no. 3 (2010), pp. 4-12
Voir la notice de l'article provenant de la source Math-Net.Ru
Generalization of the known Almansi decomposition formula to non-singular second order partial differential operators with constant coefficients is considered. A simple formula for determining the first harmonic function in the classical Almansi decomposition is given.
Mots-clés :
Almansi decomposition, polynomial solutions.
Keywords: second order partial differential operators
Keywords: second order partial differential operators
@article{VYURM_2010_3_a0,
author = {V. V. Karachik},
title = {Almansi decompositions for non-singular second order partial differential operators},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {4--12},
publisher = {mathdoc},
number = {3},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2010_3_a0/}
}
TY - JOUR AU - V. V. Karachik TI - Almansi decompositions for non-singular second order partial differential operators JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2010 SP - 4 EP - 12 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VYURM_2010_3_a0/ LA - ru ID - VYURM_2010_3_a0 ER -
%0 Journal Article %A V. V. Karachik %T Almansi decompositions for non-singular second order partial differential operators %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2010 %P 4-12 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VYURM_2010_3_a0/ %G ru %F VYURM_2010_3_a0
V. V. Karachik. Almansi decompositions for non-singular second order partial differential operators. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, no. 3 (2010), pp. 4-12. http://geodesic.mathdoc.fr/item/VYURM_2010_3_a0/