Almansi decompositions for non-singular second order partial differential operators
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, no. 3 (2010), pp. 4-12 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Generalization of the known Almansi decomposition formula to non-singular second order partial differential operators with constant coefficients is considered. A simple formula for determining the first harmonic function in the classical Almansi decomposition is given.
Mots-clés : Almansi decomposition, polynomial solutions.
Keywords: second order partial differential operators
@article{VYURM_2010_3_a0,
     author = {V. V. Karachik},
     title = {Almansi decompositions for non-singular second order partial differential operators},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {4--12},
     year = {2010},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2010_3_a0/}
}
TY  - JOUR
AU  - V. V. Karachik
TI  - Almansi decompositions for non-singular second order partial differential operators
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2010
SP  - 4
EP  - 12
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VYURM_2010_3_a0/
LA  - ru
ID  - VYURM_2010_3_a0
ER  - 
%0 Journal Article
%A V. V. Karachik
%T Almansi decompositions for non-singular second order partial differential operators
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2010
%P 4-12
%N 3
%U http://geodesic.mathdoc.fr/item/VYURM_2010_3_a0/
%G ru
%F VYURM_2010_3_a0
V. V. Karachik. Almansi decompositions for non-singular second order partial differential operators. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, no. 3 (2010), pp. 4-12. http://geodesic.mathdoc.fr/item/VYURM_2010_3_a0/

[1] G. B. Ren, U. Kähler, “Almansi decompositions for polyharmonic, polyheat, and polywave functions”, Studia Math., 172:1 (2006), 91–100 | DOI | MR | Zbl

[2] V. V. Karachik, “Ob odnom razlozhenii tipa Almansi”, Matematicheskie zametki, 83:3 (2008), 370–380 | DOI | MR | Zbl

[3] V. V. Karachik, N. A. Antropova, “O reshenii neodnorodnogo poligarmonicheskogo uravneniya i neodnorodnogo uravneniya Gelmgoltsa”, Differentsialnye uravneniya, 46:3 (2010), 384–395 | MR | Zbl

[4] V. V. Karachik, “Polynomial solutions to the systems of partial differential equations with constant coefficients”, Yokohama Mathematical Journal, 47 (2000), 121–142 | MR | Zbl

[5] V. V. Karachik, “Harmonic polynomials and the divisibility problem”, Proceedings of AMS, 125:11 (1997), 3257–3258 | DOI | MR | Zbl

[6] V. V. Karachik, “Normalized system of functions with respect to the Laplace operator and its applications”, Journal of Mathematical Analysis and Applications, 287:2 (2003), 577–592 | DOI | MR | Zbl

[7] V. V. Karachik, “Ob odnom predstavlenii analiticheskikh funktsii garmonicheskimi”, Matematicheskie trudy, 10:2 (2007), 142–162 | MR | Zbl