Computer modeling of electromagnetic radiation interaction with nanotubes
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, no. 2 (2010), pp. 79-86 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is offered for microwave radiations way of the reinforcement in active medium. Pumping the medium is produced using non-stationary electric field on sprayed midair nanotubes. Analytical importance of radiation reinforcements factor is received. Under $c_0\approx10^{-3}$ three-dimentional share of nanotubes to account of the use the pulsed source of the voltage to big power (energy density $\sim 200$ J/m$^3$) weak signal gain factor $\Gamma_0=0,055$ m$^{-1}$. One of the possible mechanism of the reinforcement microwave radiations is considered in spatial resonator.
Keywords: microwave radiation, electric field.
Mots-clés : nanoparticles
@article{VYURM_2010_2_a12,
     author = {N. R. Sadykov and N. A. Skorkin},
     title = {Computer modeling of electromagnetic radiation interaction with nanotubes},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {79--86},
     year = {2010},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2010_2_a12/}
}
TY  - JOUR
AU  - N. R. Sadykov
AU  - N. A. Skorkin
TI  - Computer modeling of electromagnetic radiation interaction with nanotubes
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2010
SP  - 79
EP  - 86
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VYURM_2010_2_a12/
LA  - ru
ID  - VYURM_2010_2_a12
ER  - 
%0 Journal Article
%A N. R. Sadykov
%A N. A. Skorkin
%T Computer modeling of electromagnetic radiation interaction with nanotubes
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2010
%P 79-86
%N 2
%U http://geodesic.mathdoc.fr/item/VYURM_2010_2_a12/
%G ru
%F VYURM_2010_2_a12
N. R. Sadykov; N. A. Skorkin. Computer modeling of electromagnetic radiation interaction with nanotubes. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, no. 2 (2010), pp. 79-86. http://geodesic.mathdoc.fr/item/VYURM_2010_2_a12/

[1] V. M. Shalaev, “Electromagnetic properties of smallparticle composites”, Phys. Rep., 272 (1996), 61 | DOI

[2] S. V. Karpov, V. V. Slabko, Opticheskie i fotofizicheskie svoistva fraktalno-strukturirovannykh zolei metallov, Izd-vo SO RAN, Novosibirsk, 2003, 265 pp.

[3] V. E. Fortov, A. P. Nefedov, O. S. Vaulina i dr., “Pylevaya plazma, indutsirovannaya solnechnym izlucheniem, v usloviyakh mikrogravitatsii: eksperiment na bortu orbitalnoi stantsii «Mir»”, ZhETF, 114:6(12) (1998), 2004–2021

[4] A. P. Nefedov, O. F. Petrov, V. E. Fortov, “Kristallicheskie struktury v plazme s silnym vzaimodeistviem makrochastits”, UFN, 176:11 (1998), 1215–1226

[5] S. G. Rautian, “Nelineinaya spektroskopiya nasyscheniya vyrozhdennogo elektronnogo gaza v sfericheskikh chastitsakh metalla”, ZhETF, 112 (1997), 836

[6] V. A. Zatsepin, N. R. Sadykov, M. O. Sadykova i dr., “O vozmozhnosti sozdaniya nestatsionarnogo volnovodnogo kanala na osnove udlinennykh nanochastits”, Optika atmosfery i okeana, 20:4 (2007), 378–379

[7] V. A. Zatsepin, V. P. Smyslov, N. R. Sadykov i dr., “O vozmozhnosti sozdaniya nestatsionarnogo volnovodnogo kanala na osnove udlinennykh nanochastits”, Optika atmosfery i okeana, 17:2–3 (2004), 168–170

[8] N. G. Galkin, V. A. Margulis, A. V. Shorokhov, “Vnutrizonnoe pogloschenie elektromagnitnogo izlucheniya kvantovymi nanostrukturami s parabolicheskim potentsialom konfainmenta”, FTT, 43:3 (2001), 511–519

[9] N. G. Galkin, V. A. Margulis, A. V. Shorokhov, “Elektrodinamicheskaya vospriimchivost kvantovoi nanotrubki v parallelnom magnitnom pole”, FTT, 44:3 (2002), 466–467

[10] M. I. Kaganov, I. M. Lifshits, “Elektronnaya teoriya metallov i geometriya”, UFN, 129:3 (1979), 487–529 | DOI

[11] N. R. Sadykov, N. A. Skorkin, “Usilenie i samofokusirovka SVCh-izlucheniya s pomoschyu kvazistatsionarnogo elektricheskogo polya v srede s udlinennymi nanochastitsami”, Pisma v ZhTF, 35:21 (2009), 42

[12] A. V. Eletskii, B. M. Smirnov, “Fullereny i struktury ugleroda”, UFN, 165:9 (1995), 977 | DOI

[13] A. V. Eletskii, “Mekhanicheskie svoistva uglerodnykh nanostruktur i materialov na ikh osnove”, UFN, 177:3 (2007), 233–274 | DOI | MR

[14] A. V. Eletskii, B. M. Smirnov, “Transportnye svoistva uglerodnykh nanotrubok”, UFN, 179:3 (2009), 225–242 | DOI

[15] Yu. A. Lozovik, A. M. Popov, “Svoistva i nanotekhnologicheskie primeneniya nanotrubok”, UFN, 177:7 (2007), 786–799 | DOI

[16] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. 8, Elektrodinamika sploshnykh sred, Nauka, M., 1982, 656 pp. | MR

[17] N. R. Sadykov, N. A. Skorkin, “Matematicheskoe modelirovanie protsessa vzaimodeistviya izlucheniya s dispersnymi nanochastitsami”, Optika atmosfery i okeana, 22:5 (2009), 445

[18] V. S. Vladimirov, Uravneniya matematicheskoi fiziki, Nauka, M., 1981, 512 pp. | MR

[19] R. Pantel, G. Putkhov, Osnovy kvantovoi elektroniki, Mir, M., 1972, 384 pp.

[20] G. A. Mesyats, M. I. Yalandin, “Pikosekundnaya elektronika bolshikh moschnostei”, UFN, 175:3 (2005), 225 | DOI

[21] G. A. Mesyats, “Zakony podobiya v impulsnykh gazovykh razryadakh”, UFN, 176:10 (2006), 1069 | DOI

[22] M. I. Yalandin, V. G. Shpak, “Moschnye malogabaritnye impulsno-periodicheskie generatory subnanosekundnogo diapazona”, Obzor, Pribory i tekhnika eksperimenta, 2001, no. 3, 5