Modeling of nucleation and grouth of metal nanoparticles during the condensation from vopour phase
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, no. 1 (2009), pp. 39-44 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Modeling of nucleation and growth processes were performed by molecular dynamics method. Time of nucleation and speed of clusters growth were obtained for different densities and temperatures. The base of classical nucleation theory was tested and recommendations for multi scaling modeling of nucleation process was done.
Mots-clés : metal nanoparticles, condensation
Keywords: computer simulation.
@article{VYURM_2009_1_a6,
     author = {A. G. Vorontsov},
     title = {Modeling of nucleation and grouth of metal nanoparticles during the~condensation from vopour phase},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {39--44},
     year = {2009},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2009_1_a6/}
}
TY  - JOUR
AU  - A. G. Vorontsov
TI  - Modeling of nucleation and grouth of metal nanoparticles during the condensation from vopour phase
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2009
SP  - 39
EP  - 44
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURM_2009_1_a6/
LA  - ru
ID  - VYURM_2009_1_a6
ER  - 
%0 Journal Article
%A A. G. Vorontsov
%T Modeling of nucleation and grouth of metal nanoparticles during the condensation from vopour phase
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2009
%P 39-44
%N 1
%U http://geodesic.mathdoc.fr/item/VYURM_2009_1_a6/
%G ru
%F VYURM_2009_1_a6
A. G. Vorontsov. Modeling of nucleation and grouth of metal nanoparticles during the condensation from vopour phase. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, no. 1 (2009), pp. 39-44. http://geodesic.mathdoc.fr/item/VYURM_2009_1_a6/

[1] Granqvist C. G., Buhrman R. A., “Ultrafine metal particles”, Journal of Applied Physics, 47:5 (1976), 2200 | DOI

[2] R. Becker, W. Doring, “The kinetic treatment of nuclear formation in supersaturated vapors”, Ann. Phys., 24 (1935), 719 | DOI | Zbl

[3] Ya. I. Frenkel, Kineticheskaya teoriya zhidkostei, Sobr. izbr. tr., v. 3, Izd-vo AN SSSR, M., 1959, 460 pp.

[4] Ya. B. Zeldovich, “Teoriya obrazovaniya novoi fazy. Kavitatsiya”, Zhurnal eksperimentalnoi i teoreticheskoi fiziki, 12 (1942), 525–538

[5] S. J. Plimpton, “Fast parallel algorithms for short-range molecular dynamics”, J. Comp. Phys., 117 (1995), 1 http://lammps.sandia.gov/index.html | DOI | Zbl

[6] S. M. Foiles, M. I. Baskes, M. S. Daw, “Embedded-atom-method functions for the FCC metals $\mathrm{Cu}$, $\mathrm{Ag}$, $\mathrm{Au}$, $\mathrm{Ni}$, $\mathrm{Pd}$, $\mathrm{Pt}$, and their alloys”, Phys. Rev. B, 33 (1986), 7983 | DOI

[7] Yu. I. Petrov, Klastery i malye chastitsy, Nauka, M., 1986, 368 pp.