Equation of state of three-dimensional system of particles with $N$-phased interaction potential
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, no. 1 (2009), pp. 21-24 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

By the Wertheim method, the solution of the Percus–Yevick integral equation for a system of particles with the $N$-steps potential interacting in enclosed analytical form is obtained. On the basis of the solution, the state equation for this system of particles is built.
Keywords: state equation, Percus–Yevick equation, $N$-steps potential.
@article{VYURM_2009_1_a2,
     author = {I. I. Klebanov and N. N. Ginchitskii},
     title = {Equation of state of three-dimensional system of particles with $N$-phased interaction potential},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {21--24},
     year = {2009},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2009_1_a2/}
}
TY  - JOUR
AU  - I. I. Klebanov
AU  - N. N. Ginchitskii
TI  - Equation of state of three-dimensional system of particles with $N$-phased interaction potential
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2009
SP  - 21
EP  - 24
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURM_2009_1_a2/
LA  - ru
ID  - VYURM_2009_1_a2
ER  - 
%0 Journal Article
%A I. I. Klebanov
%A N. N. Ginchitskii
%T Equation of state of three-dimensional system of particles with $N$-phased interaction potential
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2009
%P 21-24
%N 1
%U http://geodesic.mathdoc.fr/item/VYURM_2009_1_a2/
%G ru
%F VYURM_2009_1_a2
I. I. Klebanov; N. N. Ginchitskii. Equation of state of three-dimensional system of particles with $N$-phased interaction potential. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, no. 1 (2009), pp. 21-24. http://geodesic.mathdoc.fr/item/VYURM_2009_1_a2/

[1] J. K. Percus, G. J. Yevick, Phys. Rev., 10 (1958), 1 | DOI | MR

[2] M. S. Wertheim, J. Math. Phys., 5 (1964), 643 | DOI | MR | Zbl

[3] M. S. Wertheim, Phys. Rev. Lett., 10 (1963), 321 | DOI | MR | Zbl

[4] E. Thiele, J. Chem. Phys., 39 (1963), 474 | DOI

[5] R. J. Baxter, Aust. J. Phys., 21 (1968), 563 | DOI

[6] E. Leutheusser, Physica A, 127 (1984), 667 | DOI | MR | Zbl

[7] M. Robles, M. L. de Haw, A. J. Santos, J. Chem. Phys., 126 (2007), 013101 | DOI

[8] M. Adda-Bedia, E. Katzav, D. Vella, 2008, arXiv: 0802.0020v1[cond-mat.soft] | MR

[9] I. I. Klebanov, P. I. Gritsai, N. N. Ginchitskii, Vestnik YuUrGU. Seriya «Matematika, fizika, khimiya», 7(62):7 (2006), 99–103 | Zbl

[10] I. Klebanov, N. Ginchitskii, P. Gntsay, Modern Physics Letters V, 22 (2008), 1 | DOI

[11] H. H. Ginchitskii, I. I. Klebanov, Vestnik YuUrGU. Seriya «Matematika, fizika, khimiya», 7(107):10 (2008), 26–28 | Zbl