Geometrical sense of Newton metods
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, no. 1 (2009), pp. 4-12 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

New geometrical sense of Newton methods for solving the system of nonlinear equations (in infinite-measuring case — nonlinear operational equations) found by us, clarifies completely its inner mechanism. From the point of view of application it enables to explain empirically observed effects, to get a unified characterization of the method and its modification, to get a general theorem on the problem of local convergence and to get a quite clear vision of geometrical-dynamic nature of convergence problem on the whole (both local and global). The results obtained are demonstrated on the model example.
Keywords: Newton method, Riemannian geometry, calculus of approximations, differentials equations.
@article{VYURM_2009_1_a0,
     author = {M. V. Pchelintsev and N. A. Skorkin},
     title = {Geometrical sense of {Newton} metods},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {4--12},
     year = {2009},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2009_1_a0/}
}
TY  - JOUR
AU  - M. V. Pchelintsev
AU  - N. A. Skorkin
TI  - Geometrical sense of Newton metods
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2009
SP  - 4
EP  - 12
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURM_2009_1_a0/
LA  - ru
ID  - VYURM_2009_1_a0
ER  - 
%0 Journal Article
%A M. V. Pchelintsev
%A N. A. Skorkin
%T Geometrical sense of Newton metods
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2009
%P 4-12
%N 1
%U http://geodesic.mathdoc.fr/item/VYURM_2009_1_a0/
%G ru
%F VYURM_2009_1_a0
M. V. Pchelintsev; N. A. Skorkin. Geometrical sense of Newton metods. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, no. 1 (2009), pp. 4-12. http://geodesic.mathdoc.fr/item/VYURM_2009_1_a0/

[1] Dzh. Ortega, V. Reinboldt, Iteratsionnye metody resheniya nelineinykh sistem uravnenii so mnogimi neizvestnymi, Mir, M., 1975, 558 pp. | MR

[2] Dzh. Dennis, R. Shnabel, Chislennye metody bezuslovnoi optimizatsii i resheniya nelineinykh uravnenii, Mir, M., 1988, 440 pp. | MR

[3] Matematicheskaya entsiklopediya, v 5 t., v. 4, Sovetskaya entsiklopediya, M., 1984, 1004 pp.

[4] M. M. Postnikov, Rimanova geometriya, Izd. «Faktorial», M., 1998, 495 pp.

[5] M. Spivak, Matematicheskii analiz na mnogoobraziyakh, Mir, M., 1968, 320 pp.

[6] L. S. Pontryagin, Obyknovennye differentsialnye uravneniya, 5 izd., Nauka, M., 1982, 332 pp. | MR | Zbl

[7] L. V. Kantorovich, “O metode Nyutona”, Trudy mat. in-ta im. V. A. Steklova, 28, 1949, 104–144 | MR | Zbl

[8] I. P. Mysovskikh, “K voprosu o skhodimosti metoda Nyutona”, Trudy mat. in-ta im. V. A. Steklova, 28, 1949, 145–147 | MR | Zbl

[9] L. V. Kantorovich, “Printsip mazhorant i metod Nyutona”, Dokl. AN SSSR, 76:1 (1951), 17–20 | MR | Zbl

[10] S. E. Mikheev, “Skhodimost metoda Nyutona na razlichnykh klassakh funktsii”, Vychislitelnye tekhnologii, 10:3 (2005), 72–86 | Zbl