Geometrical sense of Newton metods
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, no. 1 (2009), pp. 4-12
Voir la notice de l'article provenant de la source Math-Net.Ru
New geometrical sense of Newton methods for solving the system of nonlinear equations (in infinite-measuring case — nonlinear operational equations) found by us, clarifies completely its inner mechanism. From the point of view of application it enables to explain empirically observed effects, to get a unified characterization of the method and its modification, to get a general theorem on the problem of local convergence and to get a quite clear vision of geometrical-dynamic nature of convergence problem on the whole (both local and global). The results obtained are demonstrated on the model example.
Keywords:
Newton method, Riemannian geometry, calculus of approximations, differentials equations.
@article{VYURM_2009_1_a0,
author = {M. V. Pchelintsev and N. A. Skorkin},
title = {Geometrical sense of {Newton} metods},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {4--12},
publisher = {mathdoc},
number = {1},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2009_1_a0/}
}
TY - JOUR AU - M. V. Pchelintsev AU - N. A. Skorkin TI - Geometrical sense of Newton metods JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2009 SP - 4 EP - 12 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VYURM_2009_1_a0/ LA - ru ID - VYURM_2009_1_a0 ER -
M. V. Pchelintsev; N. A. Skorkin. Geometrical sense of Newton metods. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, no. 1 (2009), pp. 4-12. http://geodesic.mathdoc.fr/item/VYURM_2009_1_a0/