$\eta$-Ricci solitons and gradient Ricci solitons on $f$-Kenmotsu manifolds
Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 23 (2020) no. 4, pp. 19-34
Cet article a éte moissonné depuis la source Math-Net.Ru
The aim of the present research article is to discuss the $f$-Kenmotsu manifolds with respect to a semi-symmetric non-metric connection conceding an $\eta$-Ricci soliton and gradient Ricci soliton. Moreover, we prove that the second order symmetric tensor is a constant multiple of the metric tensor and parallel with respect to the semi-symmetric non-metric connection. In addition,we illustrate an example to exhibit that $3$-dimensional $f$-Kenmotsu manifolds with a semi-symmetric non-metric connection concede an expanding $\eta$-Ricci soliton. Finally, it is shown that locally $\phi$-symmetric $3$-dimensional $f$-Kenmotsu manifolds with a semi-symmetric non-metric connection concede a gradient Ricci soliton.
Keywords:
$f$-Kenmotsu manifold, semi-symmetric non metric connection, $\eta$-Einstein manifold.
Mots-clés : $\eta$-Ricci Solitons, gradient Ricci solitons
Mots-clés : $\eta$-Ricci Solitons, gradient Ricci solitons
@article{VVGUM_2020_23_4_a2,
author = {Mohd Danish Siddiqi},
title = {$\eta${-Ricci} solitons and gradient {Ricci} solitons on $f${-Kenmotsu} manifolds},
journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
pages = {19--34},
year = {2020},
volume = {23},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VVGUM_2020_23_4_a2/}
}
TY - JOUR AU - Mohd Danish Siddiqi TI - $\eta$-Ricci solitons and gradient Ricci solitons on $f$-Kenmotsu manifolds JO - Matematičeskaâ fizika i kompʹûternoe modelirovanie PY - 2020 SP - 19 EP - 34 VL - 23 IS - 4 UR - http://geodesic.mathdoc.fr/item/VVGUM_2020_23_4_a2/ LA - en ID - VVGUM_2020_23_4_a2 ER -
Mohd Danish Siddiqi. $\eta$-Ricci solitons and gradient Ricci solitons on $f$-Kenmotsu manifolds. Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 23 (2020) no. 4, pp. 19-34. http://geodesic.mathdoc.fr/item/VVGUM_2020_23_4_a2/