Regularity of the transform of Laplace and the transfom of Fourier
Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 23 (2020) no. 4, pp. 13-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

Regularity of the transform of Laplace in the opened area of 0 is proved with the help of some methods of the transform of Fourier. The class of the transform of Laplace from the transform of Fourier is considered from some functions without a regularity in null. The functions are regular in the opened area of 0. It is proved that the sine transform of Fourier from the cosine transform of Fourier is equal to the cosine transform from the sine transform of Fourier on the module.
Keywords: regularity of the double transform of Laplace, transposition of the sine and cosine transforms of Fourier.
Mots-clés : transform of Fourier, transform of Laplace
@article{VVGUM_2020_23_4_a1,
     author = {A. V. Pavlov},
     title = {Regularity of the transform of {Laplace} and the transfom of {Fourier}},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {13--18},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2020_23_4_a1/}
}
TY  - JOUR
AU  - A. V. Pavlov
TI  - Regularity of the transform of Laplace and the transfom of Fourier
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2020
SP  - 13
EP  - 18
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2020_23_4_a1/
LA  - en
ID  - VVGUM_2020_23_4_a1
ER  - 
%0 Journal Article
%A A. V. Pavlov
%T Regularity of the transform of Laplace and the transfom of Fourier
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2020
%P 13-18
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2020_23_4_a1/
%G en
%F VVGUM_2020_23_4_a1
A. V. Pavlov. Regularity of the transform of Laplace and the transfom of Fourier. Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 23 (2020) no. 4, pp. 13-18. http://geodesic.mathdoc.fr/item/VVGUM_2020_23_4_a1/