On vectorization of Monte-Carlo algorithm solving classical Boltzmann equation
Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 23 (2020) no. 1, pp. 13-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

The vectorization of calculations in the Monte Carlo simulation algorithm of kinetic coefficients of solids under the influence of homogeneous external fields on the sample is discussed. It is shown that the vectorization of calculations related to the solution of the equations of motion of particles allows to obtain an acceleration from 10 to 30 %.
Keywords: Monte Carlo method, Boltzmann kinetic equation, mean free time, vectorization of calculations, intrinsics.
@article{VVGUM_2020_23_1_a1,
     author = {D. V. Zavialov and V. A. Egunov and V. I. Kontchenkov},
     title = {On vectorization of {Monte-Carlo} algorithm solving classical {Boltzmann} equation},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {13--21},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2020_23_1_a1/}
}
TY  - JOUR
AU  - D. V. Zavialov
AU  - V. A. Egunov
AU  - V. I. Kontchenkov
TI  - On vectorization of Monte-Carlo algorithm solving classical Boltzmann equation
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2020
SP  - 13
EP  - 21
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2020_23_1_a1/
LA  - ru
ID  - VVGUM_2020_23_1_a1
ER  - 
%0 Journal Article
%A D. V. Zavialov
%A V. A. Egunov
%A V. I. Kontchenkov
%T On vectorization of Monte-Carlo algorithm solving classical Boltzmann equation
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2020
%P 13-21
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2020_23_1_a1/
%G ru
%F VVGUM_2020_23_1_a1
D. V. Zavialov; V. A. Egunov; V. I. Kontchenkov. On vectorization of Monte-Carlo algorithm solving classical Boltzmann equation. Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 23 (2020) no. 1, pp. 13-21. http://geodesic.mathdoc.fr/item/VVGUM_2020_23_1_a1/