Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VVGUM_2018_21_2_a0, author = {A. Yu. Igumnov}, title = {On preserving the orientation of triangle under quasi-isometric mapping}, journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie}, pages = {5--12}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VVGUM_2018_21_2_a0/} }
TY - JOUR AU - A. Yu. Igumnov TI - On preserving the orientation of triangle under quasi-isometric mapping JO - Matematičeskaâ fizika i kompʹûternoe modelirovanie PY - 2018 SP - 5 EP - 12 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VVGUM_2018_21_2_a0/ LA - ru ID - VVGUM_2018_21_2_a0 ER -
A. Yu. Igumnov. On preserving the orientation of triangle under quasi-isometric mapping. Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 21 (2018) no. 2, pp. 5-12. http://geodesic.mathdoc.fr/item/VVGUM_2018_21_2_a0/
[1] L. Alfors, Lectures on Quasiconformal Mappings, Mir Publ., Moscow, 1969, 154 pp.
[2] A. V. Boluchevskaya, “Preserving the Orientation of a Simplex by Quasi-Isometric Mapping”, zv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 13:2, no. 1 (2013), 20–23 | Zbl
[3] A. Yu. Igumnov, “Metrization in Space Families of Points in $\mathbb{R}^n$ and Adjoining Questions”, Science Journal of Volgograd State University. Mathematics. Physics, 37:6 (2016), 40–54 | MR
[4] V. A. Klyachin, “On Homomorphisms Preserving Triangulation”, Zapiski seminara “Sverkhmedlennye protsessy”, 2009, no. 4, 169–182, VolSU Publ., Volgograd
[5] V. A. Klyachin, N. A. Chebanenko, “About Linear Prototypes of the Continuous Mappings Preserving Orientation of Simplexes”, Science Journal of Volgograd State University. Mathematics. Physics, 22:3 (2014), 56–60
[6] V. M. Miklyukov, Introduction to Non-Smooth Analysis, VolSU Publ., Volgograd, 2008, 424 pp.
[7] V. M. Miklyukov, “Some of the Problems Arising in the Problem of Triangulation Boundary Layer”, Zapiski seminara “Sverkhmedlennye protsessy”, 2006, no. 1, 154–162, VolSU Publ., Volgograd
[8] M. F. Prokhorova, “Criterions of Homeomorphism in the Theory of Grid Generation”, Zhurn. vychisl. mat. i mat. fiz., 52:5 (2012), 878–88 | Zbl
[9] M. F. Prokhorova, “Problems of Homeomorphism Arising in the Theory of Grid Generation”, Tr. IMM UrO RAN, 14:1 (2008), 112–129 | MR