Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VVGUM_2017_2_a6, author = {A. M. Afanas'ev and A. Yu. Glukhov and B. N. Siplivyi}, title = {Numerical solution of initial boundary value problems for the heat equation by the method of integral equations}, journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie}, pages = {65--74}, publisher = {mathdoc}, number = {2}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VVGUM_2017_2_a6/} }
TY - JOUR AU - A. M. Afanas'ev AU - A. Yu. Glukhov AU - B. N. Siplivyi TI - Numerical solution of initial boundary value problems for the heat equation by the method of integral equations JO - Matematičeskaâ fizika i kompʹûternoe modelirovanie PY - 2017 SP - 65 EP - 74 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VVGUM_2017_2_a6/ LA - ru ID - VVGUM_2017_2_a6 ER -
%0 Journal Article %A A. M. Afanas'ev %A A. Yu. Glukhov %A B. N. Siplivyi %T Numerical solution of initial boundary value problems for the heat equation by the method of integral equations %J Matematičeskaâ fizika i kompʹûternoe modelirovanie %D 2017 %P 65-74 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VVGUM_2017_2_a6/ %G ru %F VVGUM_2017_2_a6
A. M. Afanas'ev; A. Yu. Glukhov; B. N. Siplivyi. Numerical solution of initial boundary value problems for the heat equation by the method of integral equations. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 2 (2017), pp. 65-74. http://geodesic.mathdoc.fr/item/VVGUM_2017_2_a6/
[1] A.\;M. Afanasyev, B.\;N. Siplivyy, “The Problem of Ball Drying in Electromagnetic Field”, Inzhenerno-fizicheskiy zhurnal, 2013, no. 5, 3–8
[2] A.\;M. Afanasyev, B.\;N. Siplivyy, “The Theory of Electromagnetic Drying: Asymptotic Solution of the Initial Boundary Value Problem for the Rectangular Area”, Fizika volnovykh protsessov i radiotekhnicheskie sistemy, 15:1 (2012), 77–83
[3] A.\;M. Afanasyev, B.\;N. Siplivyy, “The Theory of Electromagnetic Drying: Asymptotic Solution of the Initial Boundary Value Problem for a Cylinder”, Teoreticheskie osnovy khimicheskikh tekhnologiy, 48 (2014), 222 | DOI
[4] A.\;B. Vasilyeva, N.\;A. Tikhonov, Integral Equations, MGU Publ., Moscow, 1989, 157 pp.
[5] S.\;Yu. Knyazev, E.\;E. Shcherbakova, “Applying the Point Sources Method of the Field in the Numerical Solution of Eigenvalue Problems for the Helmholtz Equation”, Izvestiya vysshikh uchebnykh zavedeniy. Elektromekhanika, 2016, no. 3, 11–17 | DOI
[6] A.\;N. Malyshev, Introduction to Numerical Linear Algebra, Nauka. Sibirskoe otdelenie Publ., Novosibirsk, 1991, 229 pp. | MR
[7] A.\;N. Tikhonov, A.\;A. Samarskiy, Equations of Mathematical Physics, Nauka Publ., Moscow, 2004, 798 pp. | MR
[8] A.\;N. Bogolyubov, N.\;T. Levashova, I.\;E. Mogilevskiy, Yu.\;V. Mukhtarova, N.\;E. Shapkina, Green’s Function of the Laplace Operator, Fiz. fak. MGU Publ, Moscow, 2012, 130 pp.