Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VVGUM_2017_2_a5, author = {E. V. Mosina and I. V. Chernyshev}, title = {The permeability of two-dimentional porous medium of square fibers (cell model)}, journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie}, pages = {56--64}, publisher = {mathdoc}, number = {2}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VVGUM_2017_2_a5/} }
TY - JOUR AU - E. V. Mosina AU - I. V. Chernyshev TI - The permeability of two-dimentional porous medium of square fibers (cell model) JO - Matematičeskaâ fizika i kompʹûternoe modelirovanie PY - 2017 SP - 56 EP - 64 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VVGUM_2017_2_a5/ LA - ru ID - VVGUM_2017_2_a5 ER -
%0 Journal Article %A E. V. Mosina %A I. V. Chernyshev %T The permeability of two-dimentional porous medium of square fibers (cell model) %J Matematičeskaâ fizika i kompʹûternoe modelirovanie %D 2017 %P 56-64 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VVGUM_2017_2_a5/ %G ru %F VVGUM_2017_2_a5
E. V. Mosina; I. V. Chernyshev. The permeability of two-dimentional porous medium of square fibers (cell model). Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 2 (2017), pp. 56-64. http://geodesic.mathdoc.fr/item/VVGUM_2017_2_a5/
[1] D. Anderson, J. Tannehill, R. Pletcher, Computational Fluid Mechanics and Heat Transfer, v. 2, Mir Publ., Moscow, 1990, 392 pp. | MR
[2] P.\;S. Kirdan, The Coefficient of Permeability of Two Dimentional Array of Rigit Particles in Slow Parallel Flow: Master Thesis for Degree on Applied Mathematics and Computer Science, Volgograd, 2012, 27 pp.
[3] L.\;S. Leybenzon, The Motion of Nature Fluid and Gas Through Porous Medium, Gostekhizdat Publ., Moscow, Leningrad, 1947, 245 pp.
[4] E.\;V. Mosina, I.\;V. Chernyshev, “Fluid Flow Near the Porous Boundary”, Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo, 4:3 (2011), 999–1001
[5] E.\;V. Mosina, I.\;V. Chernyshev, “Slip Condition on the Surface of a Model Fibrous Porous Medium”, Technical Physics Letters, 35:5 (2009), 103–110
[6] E.\;V. Mosina, “Numerical Study of Flow at a Liquid — Porous Medium Interface”, Theoretical Foundations of Chemical Engineering, 44:5 (2010), 536–542
[7] J. Happel, H. Brenner, Low Reynolds Numbers Hydrodynamics, Mir Publ., Moscow, 1976, 631 pp.
[8] A.\;C. Baytaş, D. Erdemş, H. Acar, O. Çetiner, H. Başci, “Analytical determination of the permeability for slow flow past periodic arrays of cylinders with different cross sections”, J. Porous Med., 15 (2012), 1009–1018 | DOI
[9] J.\;E. Drummond, M.\;I. Tahir, “Laminar viscous flow through regular arrays of parallel solid cylinders”, Int. J. Multiphase Flow, 10 (1984), 515–540 | DOI | Zbl
[10] M. Hellou, J. Martinez, M.\;El Yazidi, “Stokes flow through microstructural model of fibrous media”, Mech. Res. Commun., 31 (2004), 97–103 | DOI | Zbl
[11] D.\;F. James, A.\;M.\;J. Davis, “Flow at the interface of a model fibrous porous medium”, J. Fluid Mech., 426 (2001), 47–72 | DOI | MR | Zbl
[12] M.\;A. Tahir, H.\;V. Tafreshi, “Influence of fiber orientation on the transverse permeability of porous media”, Phys. Fluids, 21 (2009) | DOI | Zbl
[13] A. Tamayol, M. Bahrami, “Transverse permeability of fibrous porous medi”, Phys. Review, 83 (E) (2011), 046314-1-046314-9 | DOI
[14] C.\;Y. Wang, “Stokes flow through an array of rectangular fibers”, Int. J. Multiphase Flow, 22 (1996), 185–194 | DOI | Zbl
[15] P.\;K. Yada, “Slow motion of a porous cylindrical shell in a concentric cylindrical cavity”, Meccanica, 48 (2013), 1607–1622 | DOI | MR | Zbl